Abstract
Under certain conditions of preparation, DNA, whether free or complexed with polylysine or histone KAP (I, fl), produce huge negative circular dichroism (CD) spectra with maxima at about 270nm. In order to investigate the cause of these spectra, reconstituted polylysine-DNA complex was used as a model system. It was found that the CD change of DNA in the complex is not a linear function of the fraction of base pairs bound. Such a CD spectrum is not changed despite dilution up to 128 folds for as long as 12 hours. Difference CD spectra taken between free DNA and any of the complexes are qualitatively the same, and are similar to those of free DNA and nucleohistone KAP (Fasman et al., Biochemistry 9, 2814-2822, 1970), free DNA and direct mixed polylysine-DNA complexes, or free DNA in high salt (Chang et al., Biochemistry12, 3028-3032, 1973). The suggestion is made that this CD spectrum might be caused by specific conformational changes in DNA, perhaps belonging to the family of B to C transitions followed by a further structural distortion of DNA due to aggregation of the nucleoprotein molecules.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler A. J., Ross D. G., Chen K., Stafford P. A., Woiszwillo M. J., Fasman G. D. Interaction of deoxyribonucleic acid with histone f2b and its half-molecules. Circular dichroism studies. Biochemistry. 1974 Jan 29;13(3):616–623. doi: 10.1021/bi00700a033. [DOI] [PubMed] [Google Scholar]
- Arnott S., Wilkins M. H., Fuller W., Langridge R. Molecular and crystal structures of double-helical RNA. 3. An 11-fold molecular model and comparison of the agreement between the observed and calculated three-dimensional diffraction data for 10- and 11-fold models. J Mol Biol. 1967 Aug 14;27(3):535–548. doi: 10.1016/0022-2836(67)90057-5. [DOI] [PubMed] [Google Scholar]
- Brunner W. C., Maestre M. F. Circular dichroism of films of polynucleotides. Biopolymers. 1974;13(2):345–357. doi: 10.1002/bip.1974.360130210. [DOI] [PubMed] [Google Scholar]
- Carroll D. Optical properties of deoxyribonucleic acid--polylysine complexes. Biochemistry. 1972 Feb 1;11(3):421–426. doi: 10.1021/bi00753a019. [DOI] [PubMed] [Google Scholar]
- Chang C., Weiskopf M., Li H. J. Conformational studies of nucleoprotein. Circular dichroism of deoxyribonucleic acid base pairs bound by polylysine. Biochemistry. 1973 Jul 31;12(16):3028–3032. doi: 10.1021/bi00740a013. [DOI] [PubMed] [Google Scholar]
- Fasman G. D., Schaffhausen B., Goldsmith L., Adler A. Conformational changes associated with f-1 histone-deoxyribonucleic acid complexes. Circular dichroism studies. Biochemistry. 1970 Jul 7;9(14):2814–2822. doi: 10.1021/bi00816a010. [DOI] [PubMed] [Google Scholar]
- Haynes M., Garrett R. A., Gratzer W. B. Structure of nucleic acid-poly base complexes. Biochemistry. 1970 Oct 27;9(22):4410–4416. doi: 10.1021/bi00824a600. [DOI] [PubMed] [Google Scholar]
- Ivanov V. I., Minchenkova L. E., Schyolkina A. K., Poletayev A. I. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers. 1973;12(1):89–110. doi: 10.1002/bip.1973.360120109. [DOI] [PubMed] [Google Scholar]
- Johnson R. S., Chan A., Hanlon S. Mixed conformations of deoxyribonucleic acid in intact chromatin isolated by various preparative methods. Biochemistry. 1972 Nov 7;11(23):4347–4358. doi: 10.1021/bi00773a023. [DOI] [PubMed] [Google Scholar]
- Jordan C. F., Lerman L. S., Venable J. H. Structure and circular dichroism of DNA in concentrated polymer solutions. Nat New Biol. 1972 Mar 22;236(64):67–70. doi: 10.1038/newbio236067a0. [DOI] [PubMed] [Google Scholar]
- Li H. J., Chang C., Weiskopf M., Brand B., Rotter A. Helix-coil transition in nucleoprotein: renaturation of polylysine-DNA and polylysine-nucleohistone complexes. Biopolymers. 1974 Apr;13(4):649–667. doi: 10.1002/bip.1974.360130402. [DOI] [PubMed] [Google Scholar]
- Li H. J., Isenberg I., Johnson W. C., Jr Absorption and circular dichroism studies on nucleohistone IV. Biochemistry. 1971 Jun 22;10(13):2587–2593. doi: 10.1021/bi00789a027. [DOI] [PubMed] [Google Scholar]
- Olins D. E. Interaction of lysine-rich histones and DNA. J Mol Biol. 1969 Aug 14;43(3):439–460. doi: 10.1016/0022-2836(69)90351-9. [DOI] [PubMed] [Google Scholar]
- Olins D. E., Olins A. L., Von Hippel P. H. Model nucleoprotein complexes: studies on the interaction of cationic homopolypeptides with DNA. J Mol Biol. 1967 Mar 14;24(2):157–176. doi: 10.1016/0022-2836(67)90324-5. [DOI] [PubMed] [Google Scholar]
- Permogorov V. I., Debabov V. G., Sladkova I. A., Rebentish B. A. Structure of DNA and histones in the nucleohistone. Biochim Biophys Acta. 1970 Feb 18;199(2):556–558. doi: 10.1016/0005-2787(70)90107-3. [DOI] [PubMed] [Google Scholar]
- Samejima T., Hashizume H., Imahori K., Fujii I., Miura K. Optical rotatory dispersion and circular dichroism of rice dwarf virus ribonucleic acid. J Mol Biol. 1968 May 28;34(1):39–48. doi: 10.1016/0022-2836(68)90233-7. [DOI] [PubMed] [Google Scholar]
- Shih T. Y., Fasman G. D. Circular dichroism studies of deoxyribonucleic acid complexes with arginine-rich histone IV (f2al). Biochemistry. 1971 Apr 27;10(9):1675–1683. doi: 10.1021/bi00785a027. [DOI] [PubMed] [Google Scholar]
- Shih T. Y., Fasman G. D. Conformation of deoxyribonucleic acid in chromatin: a circular dichroism study. J Mol Biol. 1970 Aug 28;52(1):125–129. doi: 10.1016/0022-2836(70)90182-8. [DOI] [PubMed] [Google Scholar]
- Simpson R. T., Sober H. A. Circular dichroism of calf liver nucleohistone. Biochemistry. 1970 Aug 4;9(16):3103–3109. doi: 10.1021/bi00818a001. [DOI] [PubMed] [Google Scholar]
- Sponar J., Fric I. Complexes of histone F1 with DNA in 0.15M NaCl. Circular dichroism and structure of the complexes. Biopolymers. 1972;11(11):2317–2330. doi: 10.1002/bip.1972.360111110. [DOI] [PubMed] [Google Scholar]
