Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1974 Nov;1(11):1455–1478. doi: 10.1093/nar/1.11.1455

N2-Guanine specific transfer RNA methyltransferase I from rat liver and leukemic rat spleen*

Jan Kraus 1, Matthys Staehelin 1
PMCID: PMC343424  PMID: 10793703

Abstract

An enzyme was purified from rat liver and leukemic rat spleen which methylates guanosine residues in tRNA to N2-methylguanosine. By sequence analysis of bulk E. coli tRNA methylated with crude extracts it was shown that the enzyme is responsible for about 50% of total m2G formed invitro. The extent of methylation of a number of homogenous tRNA species was measured using the purified enzyme from both sources. Among tested E. coli tRNAs only tRNAArg, tRNAPhe, and tRNAVal yielded significantly more m2G than the bulk tRNA. The Km for tRNAArg in the methylation reaction with enzymes from either tissue was 7.8 × 10−7 M as compared to the value 1 × 10−5 M obtained for the bulk tRNA. In a pancreatic RNase digest of bulk tRNA as well as of pure tRNAArg, tRNAPhe, and tRNAVal, A-m2G-Cp was found to be the only sequence methylated. Thus, the mammalian methyltransferase specifically recognizes the guanylate residue at position 10 from the 5′-end contained in a sequence (s4)U-A-G-Cp. Furthermore, there is no change between the enzyme from normal liver and leukemic spleen in the affinity for tRNA, the methylating capacity, and tRNA site and sequence recognition specificity.

Full text

PDF
1455

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F., Spremulli L. L., Brown G. M. tRNA methylases from HeLa cells: purification and properties of an adenine-1-methylase and a guanine-N2-methylase. Arch Biochem Biophys. 1974 May;162(1):38–47. doi: 10.1016/0003-9861(74)90102-7. [DOI] [PubMed] [Google Scholar]
  2. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BERGQUIST P. L., SCOTT J. F. SOME NUCLEOTIDE SEQUENCES FROM PARTIALLY PURIFIED TRANSFER RIBONUCLEIC ACIDS. Biochim Biophys Acta. 1964 Jun 22;87:199–211. doi: 10.1016/0926-6550(64)90216-6. [DOI] [PubMed] [Google Scholar]
  4. Baguley B. C., Staehelin M. A comparison of 1-methyladenine-containing sequences in transfer ribonucleic acid from yeast and from rat liver. Biochemistry. 1969 Jan;8(1):257–262. doi: 10.1021/bi00829a036. [DOI] [PubMed] [Google Scholar]
  5. Baguley B. C., Staehelin M. Substrate specificity of adenine-specific transfer RNA methylase in normal and leukemic tissues. Eur J Biochem. 1968 Oct 17;6(1):1–7. doi: 10.1111/j.1432-1033.1968.tb00411.x. [DOI] [PubMed] [Google Scholar]
  6. Baguley B. C., Staehelin M. The specificity of transfer ribonucleic acid methylases from rat liver. Biochemistry. 1968 Jan;7(1):45–50. doi: 10.1021/bi00841a007. [DOI] [PubMed] [Google Scholar]
  7. Baguley B. C., Wehrli W., Staehelin M. In vitro methylation of yeast serine transfer ribonucleic acid. Biochemistry. 1970 Mar 31;9(7):1645–1649. doi: 10.1021/bi00809a026. [DOI] [PubMed] [Google Scholar]
  8. Borek E. Transfer RNA and transfer RNA modification in differentiation and neoplasia. Introduction. Cancer Res. 1971 May;31(5):596–597. [PubMed] [Google Scholar]
  9. Craddock V. M. Transfer RNA methylases and cancer. Nature. 1970 Dec 26;228(5278):1264–1268. doi: 10.1038/2281264a0. [DOI] [PubMed] [Google Scholar]
  10. DUNN D. B. Additional components in ribonucleic acid of rat-liver fractions. Biochim Biophys Acta. 1959 Jul;34:286–288. doi: 10.1016/0006-3002(59)90274-4. [DOI] [PubMed] [Google Scholar]
  11. DUNN D. B. The occurrence of 1-methyladenine in ribonucleic acid. Biochim Biophys Acta. 1961 Jan 1;46:198–200. doi: 10.1016/0006-3002(61)90668-0. [DOI] [PubMed] [Google Scholar]
  12. FLEISSNER E., BOREK E. A new enzyme of RNA synthesis: RNA methylase. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1199–1203. doi: 10.1073/pnas.48.7.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gauss D. H., von der Haar F., Maelicke A., Cramer F. Recent results of tRNA research. Annu Rev Biochem. 1971;40:1045–1078. doi: 10.1146/annurev.bi.40.070171.005145. [DOI] [PubMed] [Google Scholar]
  14. HURWITZ J., GOLD M., ANDERS M. THE ENZYMATIC METHYLATION OF RIBONUCLEIC ACID AND DEOXYRIBONUCLEIC ACID. 3. PURIFICATION OF SOLUBLE RIBONUCLEIC ACID-METHYLATING ENZYMES. J Biol Chem. 1964 Oct;239:3462–3473. [PubMed] [Google Scholar]
  15. Hacker B., Mandel L. R. Altered transfer RNA methylase patterns induced by an avian oncogenic virus. Biochim Biophys Acta. 1969 Sep 17;190(1):38–51. doi: 10.1016/0005-2787(69)90152-x. [DOI] [PubMed] [Google Scholar]
  16. Johnson L., Hayashi H., Söll D. Isolation and properties of a transfer ribonucleic acid deficient in ribothymidine. Biochemistry. 1970 Jul 7;9(14):2823–2831. doi: 10.1021/bi00816a011. [DOI] [PubMed] [Google Scholar]
  17. Kerr S. J. Absence of a natural inhibitor of the tRNA methylases from fetal and tumor tissues. Proc Natl Acad Sci U S A. 1971 Feb;68(2):406–410. doi: 10.1073/pnas.68.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kerr S. J., Borek E. The tRNA methyltransferases. Adv Enzymol Relat Areas Mol Biol. 1972;36:1–27. doi: 10.1002/9780470122815.ch1. [DOI] [PubMed] [Google Scholar]
  19. Kerr S. J. Natural inhibitors of the transfer ribonucleic acid methylases. Biochemistry. 1970 Feb 3;9(3):690–695. doi: 10.1021/bi00805a032. [DOI] [PubMed] [Google Scholar]
  20. Kerr S. J., Sharma O. K., Borek E. Agents of modulation of the transfer RNA methylases. Cancer Res. 1971 May;31(5):633–636. [PubMed] [Google Scholar]
  21. Kraus J., Staehelin M. N2-guanine specific transfer RNA methyltransferase II from rat liver. Nucleic Acids Res. 1974 Nov;1(11):1479–1496. doi: 10.1093/nar/1.11.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kuchino Y., Endo H., Nishimura S. Comparison of the specificity and extent of in vitro methylation by guanylate residue-specific transfer RNA methylases isolated from ascites hepatoma, 3'-methyl-4-dimethylaminoazobenzene-induced hepatoma, and normal rat liver. Cancer Res. 1972 Jun;32(6):1243–1250. [PubMed] [Google Scholar]
  23. Kuchino Y., Nishimura S. Nucleotide sequence specificities of guanylate residue-specific tRNA methylases from rat liver. Biochem Biophys Res Commun. 1970 Jul 27;40(2):306–313. doi: 10.1016/0006-291x(70)91010-7. [DOI] [PubMed] [Google Scholar]
  24. Kuchino Y., Nishimura S. Nucleotide sequence specificities of guanylate residue-specific tRNA methylases from rat liver. Biochem Biophys Res Commun. 1970 Jul 27;40(2):306–313. doi: 10.1016/0006-291x(70)91010-7. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. MONIER R., STEPHENSON M. L., ZAMECNIK P. C. The preparation and some properties of a low molecular weight ribonucleic acid from baker's yeast. Biochim Biophys Acta. 1960 Sep 9;43:1–8. doi: 10.1016/0006-3002(60)90399-1. [DOI] [PubMed] [Google Scholar]
  27. Macon J. B., Wolfenden R. 1-Methyladenosine. Dimroth rearrangement and reversible reduction. Biochemistry. 1968 Oct;7(10):3453–3458. doi: 10.1021/bi00850a021. [DOI] [PubMed] [Google Scholar]
  28. Müller P., Wehrli W., Staehelin M. Isolation and characterization of serine transfer ribonucleic acids from rat liver. Biochemistry. 1971 May 11;10(10):1885–1890. doi: 10.1021/bi00786a024. [DOI] [PubMed] [Google Scholar]
  29. Nichols J. L., Lane B. G. In vitro O2'-methylation of sugars in E. coli RNA. II. Methylation of ribosomal and transfer RNA by homologous methylases in crude cell-free extracts and particulate suspensions from a relaxed mutant of E. coli. Can J Biochem. 1968 Dec;46(12):1487–1495. doi: 10.1139/o68-222. [DOI] [PubMed] [Google Scholar]
  30. Pegg A. E. Methylation of purified transfer RNA preparations by extracts derived from rat kidney and kidney tumours. Biochim Biophys Acta. 1972 Mar 24;262(3):283–289. doi: 10.1016/0005-2787(72)90265-1. [DOI] [PubMed] [Google Scholar]
  31. Piper P. W., Clark B. F. Primary structure of a mouse myeloma cell initiator transfer RNA. Nature. 1974 Feb 22;247(5442):516–518. doi: 10.1038/247516a0. [DOI] [PubMed] [Google Scholar]
  32. Randerath K. Application of a tritium derivative method to human brain and brain tumor transfer RNA analysis. Cancer Res. 1971 May;31(5):658–661. [PubMed] [Google Scholar]
  33. Roe B., Michael M., Dudock B. Function of N2 methylguanine in phenylalanine transfer RNA. Nat New Biol. 1973 Dec 5;246(153):135–138. doi: 10.1038/newbio246135a0. [DOI] [PubMed] [Google Scholar]
  34. Rogg H., Staehelin M. Minor dinocleotides of rat-liver transfer RNA. Biochim Biophys Acta. 1969 Nov 19;195(1):16–22. doi: 10.1016/0005-2787(69)90598-x. [DOI] [PubMed] [Google Scholar]
  35. Rogg H., Staehelin M. Nucleotide sequences of rat liver serine-tRNA. 1. Products of digestion with pancreatic ribonuclease. Eur J Biochem. 1971 Jul 29;21(2):235–242. doi: 10.1111/j.1432-1033.1971.tb01461.x. [DOI] [PubMed] [Google Scholar]
  36. Rogg H., Wehrli W., Staehelin M. Isolation of mammalian transfer RNA. Biochim Biophys Acta. 1969 Nov 19;195(1):13–15. doi: 10.1016/0005-2787(69)90597-8. [DOI] [PubMed] [Google Scholar]
  37. SMITH J. D., DUNN D. B. An additional sugar component of ribonucleic acids. Biochim Biophys Acta. 1959 Feb;31(2):573–575. doi: 10.1016/0006-3002(59)90045-9. [DOI] [PubMed] [Google Scholar]
  38. SMITH J. D., DUNN D. B. The occurrence of methylated guanines in ribonucleic acids from several sources. Biochem J. 1959 Jun;72(2):294–301. doi: 10.1042/bj0720294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. SRINIVASAN P. R., BOREK E. SPECIES VARIATION OF THE RNA METHYLASES. Biochemistry. 1964 May;3:616–619. doi: 10.1021/bi00893a003. [DOI] [PubMed] [Google Scholar]
  40. Simsek M., RajBhandary U. L., Boisnard M., Petrissant G. Nucleotide sequence of rabbit liver and sheep mammary gland cytoplasmic initiatory transfer RNAs. Nature. 1974 Feb 22;247(5442):518–520. doi: 10.1038/247518a0. [DOI] [PubMed] [Google Scholar]
  41. Starr J. L., Sells B. H. Methylated ribonucleic acids. Physiol Rev. 1969 Jul;49(3):623–669. doi: 10.1152/physrev.1969.49.3.623. [DOI] [PubMed] [Google Scholar]
  42. Weeren H. O., Ryon A. D., Heatherly D. E., Kelmers A. D. Gram-scale purification of arginine, formylmethionione, glutamic acid and the nylalanine transfer ribonucleic acids from E. coli K-12MO7. Biotechnol Bioeng. 1970 Nov;12(6):889–912. doi: 10.1002/bit.260120604. [DOI] [PubMed] [Google Scholar]
  43. Wehrli W., Staehelin M. Fractionation of the nonpolar transfer ribonucleic acids from rat liver, yeast, and Escherichia coli by partition chromatography. Biochemistry. 1971 May 11;10(10):1878–1885. doi: 10.1021/bi00786a023. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES