Abstract
A model is proposed for the structure of nuclease-resistant chromatin particles. The model is novel in that it proposes that the DNA in such a particle is wound about a protein core, made up of the hydrophobic regions of histone molecules.
Full text
PDF![1579](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a06/343437/e3c165b97a0d/nar00520-0226.png)
![1580](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a06/343437/b9dcfa949fc0/nar00520-0227.png)
![1581](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a06/343437/b77de0c8f89e/nar00520-0228.png)
![1582](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a06/343437/869f3bca43ad/nar00520-0229.png)
![1583](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a06/343437/6764d268fb96/nar00520-0230.png)
![1584](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a06/343437/eb9921f95688/nar00520-0231.png)
![1585](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a06/343437/a399d642686f/nar00520-0232.png)
![1586](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a06/343437/48da168885f1/nar00520-0233.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler A. J., Ross D. G., Chen K., Stafford P. A., Woiszwillo M. J., Fasman G. D. Interaction of deoxyribonucleic acid with histone f2b and its half-molecules. Circular dichroism studies. Biochemistry. 1974 Jan 29;13(3):616–623. doi: 10.1021/bi00700a033. [DOI] [PubMed] [Google Scholar]
- Bartley J. A., Chalkley R. The viscosity of nucleohistone in urea. Biochim Biophys Acta. 1968 Jun 26;160(2):224–228. doi: 10.1016/0005-2795(68)90090-1. [DOI] [PubMed] [Google Scholar]
- Boublík M., Bradbury E. M., Crane-Robinson C. An investigation of the conformational changes in histones F1 and F2a1 by proton magnetic resonance spectroscopy. Eur J Biochem. 1970 Jul;14(3):486–497. doi: 10.1111/j.1432-1033.1970.tb00315.x. [DOI] [PubMed] [Google Scholar]
- Bradbury E. M., Molgaard H. V., Stephens R. M., Bolund L. A., Johns E. W. X-ray studies of nucleoproteins depleted of lysine-rich histone. Eur J Biochem. 1972 Dec 18;31(3):474–482. doi: 10.1111/j.1432-1033.1972.tb02555.x. [DOI] [PubMed] [Google Scholar]
- Bradbury E. M., Rattle H. W. Simple computer-aided approach for the analyses of the nuclear-magnetic-resonance spectra of histones. Fractions F1, Fsa1, F2B, cleaved halves of F2B and F2B-DNA. Eur J Biochem. 1972 May 23;27(2):270–281. doi: 10.1111/j.1432-1033.1972.tb01836.x. [DOI] [PubMed] [Google Scholar]
- Bram S., Ris H. On the structure of nucleohistone. J Mol Biol. 1971 Feb 14;55(3):325–336. doi: 10.1016/0022-2836(71)90321-4. [DOI] [PubMed] [Google Scholar]
- Crick F. General model for the chromosomes of higher organisms. Nature. 1971 Nov 5;234(5323):25–27. doi: 10.1038/234025a0. [DOI] [PubMed] [Google Scholar]
- D'Anna J. A., Jr, Isenberg I. A complex of histones IIb2 and IV. Biochemistry. 1973 Mar 13;12(6):1035–1043. doi: 10.1021/bi00730a003. [DOI] [PubMed] [Google Scholar]
- D'Anna J. A., Jr, Isenberg I. Interactions of histone LAK (f2a2) with histones KAS (f2b) and GRK (f2a1). Biochemistry. 1974 May 7;13(10):2098–2104. doi: 10.1021/bi00707a016. [DOI] [PubMed] [Google Scholar]
- Hayashi H., Iwai K. Calf thymus alanine-rich, leucine-rich histone: sequences of the tryptic peptides and characteristic distributions of the basic and other residues in the molecule. J Biochem. 1971 Sep;70(3):543–547. doi: 10.1093/oxfordjournals.jbchem.a129670. [DOI] [PubMed] [Google Scholar]
- Johns E. W. Histones, chromatin structure and RNA synthesis. Nat New Biol. 1972 May 17;237(72):87–88. doi: 10.1038/newbio237087a0. [DOI] [PubMed] [Google Scholar]
- Johnson R. S., Chan A., Hanlon S. Mixed conformations of deoxyribonucleic acid in intact chromatin isolated by various preparative methods. Biochemistry. 1972 Nov 7;11(23):4347–4358. doi: 10.1021/bi00773a023. [DOI] [PubMed] [Google Scholar]
- Kelley R. I. Isolation of a histone IIb1-IIb2 complex. Biochem Biophys Res Commun. 1973 Oct 15;54(4):1588–1594. doi: 10.1016/0006-291x(73)91168-6. [DOI] [PubMed] [Google Scholar]
- Kornberg R. D. Chromatin structure: a repeating unit of histones and DNA. Science. 1974 May 24;184(4139):868–871. doi: 10.1126/science.184.4139.868. [DOI] [PubMed] [Google Scholar]
- Kornberg R. D., Thomas J. O. Chromatin structure; oligomers of the histones. Science. 1974 May 24;184(4139):865–868. doi: 10.1126/science.184.4139.865. [DOI] [PubMed] [Google Scholar]
- Li H. J., Bonner J. Interaction of histone half-molecules with deoxyribonucleic acid. Biochemistry. 1971 Apr 13;10(8):1461–1470. doi: 10.1021/bi00784a030. [DOI] [PubMed] [Google Scholar]
- Littau V. C., Burdick C. J., Allfrey V. G., Mirsky S. A. The role of histones in the maintenance of chromatin structure. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1204–1212. doi: 10.1073/pnas.54.4.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malchy B., Kaplan H. Reactive properties of the amino groups of histones in calf thymus chromatin. J Mol Biol. 1974 Feb 5;82(4):537–545. doi: 10.1016/0022-2836(74)90247-2. [DOI] [PubMed] [Google Scholar]
- Olins A. L., Olins D. E. Spheroid chromatin units (v bodies). Science. 1974 Jan 25;183(4122):330–332. doi: 10.1126/science.183.4122.330. [DOI] [PubMed] [Google Scholar]
- Pardon J. F., Wilkins M. H., Richards B. M. Super-helical model for nucleohistone. Nature. 1967 Jul 29;215(5100):508–509. doi: 10.1038/215508a0. [DOI] [PubMed] [Google Scholar]
- Richards B. M., Pardon J. F. The molecular structure of nucleohistone (DNH). Exp Cell Res. 1970 Sep;62(1):184–196. doi: 10.1016/0014-4827(79)90519-6. [DOI] [PubMed] [Google Scholar]
- Rill R., Van Holde K. E. Properties of nuclease-resistant fragments of calf thymus chromatin. J Biol Chem. 1973 Feb 10;248(3):1080–1083. [PubMed] [Google Scholar]
- Roark D. E., Geoghegan T. E., Keller G. H. A two-subunit histone complex from calf thymus. Biochem Biophys Res Commun. 1974 Jul 24;59(2):542–547. doi: 10.1016/s0006-291x(74)80014-8. [DOI] [PubMed] [Google Scholar]
- Sahasrabuddhe C. G., Van Holde K. E. The effect of trypsin on nuclease-resistant chromatin fragments. J Biol Chem. 1974 Jan 10;249(1):152–156. [PubMed] [Google Scholar]
- Simpson R. T. Interaction of a repotter molecule with chromatin. Evidence suggesting that the proteins of chromatin do not occupy the minor groove of deoxyribonucleic acid. Biochemistry. 1970 Nov 24;9(24):4814–4819. doi: 10.1021/bi00826a028. [DOI] [PubMed] [Google Scholar]
- Simpson R. T. Modification of chromatin by trypsin. The role of proteins in maintainance of deoxyribonucleic acid conformation. Biochemistry. 1972 May 23;11(11):2003–2008. doi: 10.1021/bi00761a002. [DOI] [PubMed] [Google Scholar]
- Skandrani E., Mizon J., Sautière P., Biserte G. Etude de la fraction F2b des histones de thymus de veau. Biochimie. 1972;54(10):1267–1272. doi: 10.1016/s0300-9084(72)80067-1. [DOI] [PubMed] [Google Scholar]
- Slayter H. S., Shih T. Y., Adler A. J., Fasman G. D. Electron microscopy and circular dichroism studies on chromatin. Biochemistry. 1972 Aug 1;11(16):3044–3054. doi: 10.1021/bi00766a016. [DOI] [PubMed] [Google Scholar]