Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1974 Dec;1(12):1691–1701. doi: 10.1093/nar/1.12.1691

Synthesis and properties of some cyclic AMP alkyl phosphotriesters

RN Gohil 1, RG Gillen 1, J Nagyvary 1
PMCID: PMC343448  PMID: 4375277

Abstract

Cyclic AMP was converted to its phosphotriesters according to the classical approach of phosphate activation with a sulfonyl chloride, followed by esterification with an alcohol. The methyl, ethyl, propyl, butyl and cetyl triesters were prepared, and some of their physical-chemical properties determined. Alkaline hydrolysis of these alkyl phosphotriesters resulted predominantly in ring opening. On the other hand, nucleophilic attack by thiourea led to the formation of cAMP as the main product. The conclusion can be drawn from these results that cAMP phosphotriesters could serve as suitable storage forms of cAMP, and cyclic triesters may be the best vehicle of transporting nucleotides through biological membranes.

Full text

PDF
1691

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackburn B. J., Lapper R. D., Smith I. C. A proton magnetic resonance study of the conformations of 3',5'-cyclic nucleotides. J Am Chem Soc. 1973 May 2;95(9):2873–2878. doi: 10.1021/ja00790a023. [DOI] [PubMed] [Google Scholar]
  2. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Greengard P. On the reactivity and mechanism of action of cyclic nucleotides. Ann N Y Acad Sci. 1971 Dec 30;185:18–26. doi: 10.1111/j.1749-6632.1971.tb45231.x. [DOI] [PubMed] [Google Scholar]
  4. Miller P. S., Fang K. N., Kondo N. S., Ts'o P. O. Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. J Am Chem Soc. 1971 Dec;93(24):6657–6665. doi: 10.1021/ja00753a054. [DOI] [PubMed] [Google Scholar]
  5. Nagyvary J., Gohil R. N., Kirchner C. R., Stevens J. D. Studies on neutral esters of cyclic AMP. Biochem Biophys Res Commun. 1973 Dec 19;55(4):1072–1077. doi: 10.1016/s0006-291x(73)80004-x. [DOI] [PubMed] [Google Scholar]
  6. Norman E. J., Nagyvary J. Synthesis of some trinucleoside monophosphates of biological interest. J Med Chem. 1974 Apr;17(4):473–475. doi: 10.1021/jm00250a028. [DOI] [PubMed] [Google Scholar]
  7. POSTERNAK T., SUTHERLAND E. W., HENION W. F. Derivatives of cyclic 3',5'-adenosine monophosphate. Biochim Biophys Acta. 1962 Dec 17;65:558–560. doi: 10.1016/0006-3002(62)90475-4. [DOI] [PubMed] [Google Scholar]
  8. Provenzale R. G., Nagyvary J. Synthesis and structure of polyarabinouridylic acid. Biochemistry. 1970 Apr 14;9(8):1744–1752. doi: 10.1021/bi00810a013. [DOI] [PubMed] [Google Scholar]
  9. Simon L. N., Shuman D. A., Robins R. K. The chemistry and biological properties of nucleotides related to nucleoside 3',5'-cyclic phosphates. Adv Cyclic Nucleotide Res. 1973;3:225–353. [PubMed] [Google Scholar]
  10. Watenpaugh K., Dow J., Jensen L. H., Furberg S. Crystal and molecular structure of adenosine 3',5'-cyclic phosphate. Science. 1968 Jan 12;159(3811):206–207. doi: 10.1126/science.159.3811.206. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES