Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1974 Dec;1(12):1703–1712. doi: 10.1093/nar/1.12.1703

Isolation and chromatographic behaviour of phenylalanine tRNA from barley embryos

D Labuda 1, Z Janowicz 1, T Haertle 1, J Augustyniak 1
PMCID: PMC343449  PMID: 4615303

Abstract

Two fractions of phenylalanine tRNA (tRNAPhe1 and tRNAPhe2) were purified by BD-cellulose and RPC-5 chromatography of crude tRNA isolated from barley embryos. Successive RPC-5 rechromatography runs of tRNAPhe2 showed its conversion into more stable tRNAPhe1, suggesting that the two fractions have essentially the same primary structure. Both tRNAPhe1 and tRNAPhe2 had about the same acceptor activity, but tRNAPhe2 was aminoacylated much faster than tRNAPhe1. RPC-5 chromatography of crude aminoacylated tRNA showed higher contents of phe-tRNAPhe2 than of phe-tRNAPhe1 but the ratio of these two fractions estimated by relative fluorescence intensity was about 1. Fluorescence spectra of tRNAPhe from barley embryos suggest that it contains Y base similar to Yw from wheat tRNAPhe.

Full text

PDF
1703

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blobstein S. H., Grunberger D., Weinstein I. B., Nakanishi K. Isolation and structure determination of the fluorescent base from bovine liver phenylalanine transfer ribonucleic acid. Biochemistry. 1973 Jan 16;12(2):188–193. doi: 10.1021/bi00726a002. [DOI] [PubMed] [Google Scholar]
  2. Dudock B. S., Katz G., Taylor E. K., Holley R. W. Primary structure of wheat germ phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1969 Mar;62(3):941–945. doi: 10.1073/pnas.62.3.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fink L. M., Lanks K. W., Goto T., Weinstein I. B. Comparative studies on mammalian and yeast phenylalanine transfer ribonucleic acids. Biochemistry. 1971 May 11;10(10):1873–1878. doi: 10.1021/bi00786a022. [DOI] [PubMed] [Google Scholar]
  4. Gillam I., Millward S., Blew D., von Tigerstrom M., Wimmer E., Tener G. M. The separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry. 1967 Oct;6(10):3043–3056. doi: 10.1021/bi00862a011. [DOI] [PubMed] [Google Scholar]
  5. Herrington M. D., Hawtrey A. O. Evidence for the absence of the terminal adenine nucleotide at the amino acid-acceptor end of transfer ribonucleic acid in non-lactating bovine mammary gland and its inhibitory effect on the aminoacylation of rat liver transfer ribonucleic acid. Biochem J. 1970 Feb;116(3):405–414. doi: 10.1042/bj1160405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hiatt V. S., Snyder L. A. Phenylalanine transfer RNA species in early development of barley. Biochim Biophys Acta. 1973 Sep 28;324(1):57–68. doi: 10.1016/0005-2787(73)90250-5. [DOI] [PubMed] [Google Scholar]
  7. Keith G., Picaud F., Weissenbach J., Ebel J. P., Petrissant G., Dirheimer G. The primary structure of rabbit liver tRNA Phe and its comparison with known tRNA Phe sequences. FEBS Lett. 1973 May 1;31(3):345–347. doi: 10.1016/0014-5793(73)80138-3. [DOI] [PubMed] [Google Scholar]
  8. Littauer U. Z., Inouye H. Regulation of tRNA. Annu Rev Biochem. 1973;42:439–470. doi: 10.1146/annurev.bi.42.070173.002255. [DOI] [PubMed] [Google Scholar]
  9. Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mushinski J. F. Hepatoma--foetal Phe-tRNA also present in normal rat liver. Nature. 1974 Mar 22;248(446):332–334. doi: 10.1038/248332a0. [DOI] [PubMed] [Google Scholar]
  11. Pearson R. L., Hancher C. W., Weiss J. F., Holladay D. W., Kelmers A. D. Preparation of crude transfer RNA and chromatography purification of five transfer RNAs from calf liver. Biochim Biophys Acta. 1973 Jan 19;294(1):236–249. [PubMed] [Google Scholar]
  12. Pearson R. L., Weiss J. F., Kelmers A. D. Improved separation of transfer RNA's on polychlorotrifuoroethylene-supported reversed-phase chromatography columns. Biochim Biophys Acta. 1971 Feb 11;228(3):770–774. doi: 10.1016/0005-2787(71)90748-9. [DOI] [PubMed] [Google Scholar]
  13. RajBhandary U. L., Chang S. H. Studies on polynucleotides. LXXXII. Yeast phenylalanine transfer ribonucleic acid: partial digestion with ribonuclease T-1 and derivation of the total primary structure. J Biol Chem. 1968 Feb 10;243(3):598–608. [PubMed] [Google Scholar]
  14. Roe B., Marcu K., Dudock B. The isolation and sequence analysis of transfer RNA: the use of plaskon chromatography (RPC-5). Biochim Biophys Acta. 1973 Aug 10;319(1):25–36. doi: 10.1016/0005-2787(73)90037-3. [DOI] [PubMed] [Google Scholar]
  15. Schmidt J., Wang R., Stanfield S., Reid B. R. Yeast phenylalanyl transfer ribonucleic acid synthetase. Purification, molecular weight, and subunit structure. Biochemistry. 1971 Aug 17;10(17):3264–3268. doi: 10.1021/bi00793a016. [DOI] [PubMed] [Google Scholar]
  16. Setlow P., Primus G., Deutscher M. P. Absence of 3'-terminal residues from transfer ribonucleic acid of dormant spores of Bacillus megaterium. J Bacteriol. 1974 Jan;117(1):126–132. doi: 10.1128/jb.117.1.126-132.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yoshikami D., Keller E. B. Chemical modification of the fluorescent base in phenylalanine transfer ribonucleic acid. Biochemistry. 1971 Jul 20;10(15):2969–2976. doi: 10.1021/bi00791a027. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES