Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1975 Jul;2(7):1053–1072. doi: 10.1093/nar/2.7.1053

Inhibitors of protein synthesis V. Irreversible interaction of antibiotics with an initiation complex.

C Coutsogeorgopoulos, J T Miller, D M Hann
PMCID: PMC343493  PMID: 1098022

Abstract

The initiation complex (t-complex) formed in a cell-free system (E. coli) from Ac-Phe-tRNA, poly(U) and washed ribosomes in the presence of initiation factors (ribosomal wash) and GTP, contains the Ac-Phe-tRNA bound quantitatively in a puromycin-reactive state. The t-complex is irreversibly inactivated by spiramycin with respect to its reactivity toward puromycin. The inactivated t-complex retains all of the Ac-Phe-tRNA bound, but it does not react with puromycin (2 x10-minus-3M) within 32 min at 25 degrees. In the case of another inhibitor protein synthesis, sparsomycin, the permanently "modified" t-complex not only retains all the bound Ac-Phe-tRNA but it can still react with puromycin. In the continuous presence of sparsomycin (1 x 10-minus-7M) the bound Ac-Phe-tRNA reacts quantitatively at a rate which is one-tenth the rate at which the t-complex reacts with puromycin, at low (6.25 x 10-minus-5M) or high (2 x 10-minus-3M) concentrations. These results are not in agreement with current views according to which aparsomycin binds to the ribosome reversibly at a single site with a KI in the range of 10-minus6-10-minus-7 M and according to which this stie is at the A'-site (puromycin site) of peptidyl transferase.

Full text

PDF
1053

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A. Altered ribosomes in spiramycin-resistant mutants of Bacillus subtilis. Biochim Biophys Acta. 1968 Aug 23;166(1):218–228. doi: 10.1016/0005-2787(68)90505-4. [DOI] [PubMed] [Google Scholar]
  2. Bennett P. M., Maaloe O. The effects of fusidic acid on growth, ribosome synthesis and RNA metabolism in Escherichia coli. J Mol Biol. 1974 Dec 15;90(3):541–561. doi: 10.1016/0022-2836(74)90234-4. [DOI] [PubMed] [Google Scholar]
  3. Bernal S. D., Blumberg B. M., Nakamoto T. Requirement of initiation factor 3 in the initiation of polypeptide synthesis with N-acetylphenylalanyl-tRNA. Proc Natl Acad Sci U S A. 1974 Mar;71(3):774–778. doi: 10.1073/pnas.71.3.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coutsogeorgopoulos C. Amino acylaminonucleoside inhibitors of protein synthesis. II. Effect on oligophenylalanine formation. Biochim Biophys Acta. 1971 Jun 17;240(1):137–150. doi: 10.1016/0005-2787(71)90519-3. [DOI] [PubMed] [Google Scholar]
  5. Coutsogeorgopoulos C., Fico R., Miller J. T. On the function of guanosine triphosphate in the formation of N-acetyl-phenylalanyl puromycin. Biochem Biophys Res Commun. 1972 Jun 9;47(5):1056–1062. doi: 10.1016/0006-291x(72)90940-0. [DOI] [PubMed] [Google Scholar]
  6. Coutsogeorgopoulos C. On the accumulation of short peptides in the presence of certain inhibitors of protein synthesis. Arch Biochem Biophys. 1972 Nov;153(1):199–206. doi: 10.1016/0003-9861(72)90437-7. [DOI] [PubMed] [Google Scholar]
  7. Fernandez-Munoz R., Monro R. E., Torres-Pinedo R., Vazquez D. Substrate- and antibiotic-binding sites at the peptidyl-transferase centre of Escherichia coli ribosomes. Studies on the chloramphenicol. lincomycin and erythromycin sites. Eur J Biochem. 1971 Nov 11;23(1):185–193. doi: 10.1111/j.1432-1033.1971.tb01607.x. [DOI] [PubMed] [Google Scholar]
  8. Fico R., Coutsogeorgopoulos C. Peptidyl transferase: a new method for kinetic studies. Biochem Biophys Res Commun. 1972 May 12;47(3):645–651. doi: 10.1016/0006-291x(72)90927-8. [DOI] [PubMed] [Google Scholar]
  9. Goldberg I. H., Mitsugi K. Inhibition by sparsomycin and other antibiotics of the puromycin-induced release of polypeptide from ribosomes. Biochemistry. 1967 Feb;6(2):383–391. doi: 10.1021/bi00854a003. [DOI] [PubMed] [Google Scholar]
  10. Goldberg I. H., Mitsugi K. Sparsomycin inhibition of polypeptide synthesis promoted by synthetic and natural polynucleotides. Biochemistry. 1967 Feb;6(2):372–382. doi: 10.1021/bi00854a002. [DOI] [PubMed] [Google Scholar]
  11. Hansen M. T., Bennett P. M., von Meyenburg K. Intracistronic polarity during dissociation of translation from transcription in Escherichia coli. J Mol Biol. 1973 Jul 15;77(4):589–604. doi: 10.1016/0022-2836(73)90225-8. [DOI] [PubMed] [Google Scholar]
  12. Harris R., Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XXIV. Effects of antibiotics on binding of aminoacyl-oligonucleotides to ribosomes. J Biol Chem. 1973 Feb 25;248(4):1168–1174. [PubMed] [Google Scholar]
  13. Herner A. E., Goldberg I. H., Cohen L. B. Stabilization of N-acetylphenylalanyl transfer ribonucleic acid binding to ribosomes by sparsomycin. Biochemistry. 1969 Apr;8(4):1335–1344. doi: 10.1021/bi00832a006. [DOI] [PubMed] [Google Scholar]
  14. Innanen V. T., Nicholls D. M. Studies on peptidyl transferase in free ribosomes derived from rat liver. Biochim Biophys Acta. 1974 Aug 29;361(2):221–229. doi: 10.1016/0005-2787(74)90349-9. [DOI] [PubMed] [Google Scholar]
  15. Jimenez A., Monro R. E., Vazquez D. Interaction of Ac-Phe-tRNA with e. coli ribosomal subunits. 1. Sparsomycin-induced formation of a complex containing 50 S and 30 S subunits but not mRNA. FEBS Lett. 1970 Apr 2;7(2):103–108. doi: 10.1016/0014-5793(70)80131-4. [DOI] [PubMed] [Google Scholar]
  16. Leder P., Bursztyn H. Initiation of protein synthesis II. A convenient assay for the ribosome-dependent synthesis of N-formyl-C14-methionylpuromycin. Biochem Biophys Res Commun. 1966 Oct 20;25(2):233–238. doi: 10.1016/0006-291x(66)90586-9. [DOI] [PubMed] [Google Scholar]
  17. Lessard J. L., Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 23. Chloramphenicol, aminoacyl-oligonucleotides, and Escherichia coli ribosomes. J Biol Chem. 1972 Nov 10;247(21):6909–6912. [PubMed] [Google Scholar]
  18. Lodish H. F. Alpha and beta globin messenger ribonucleic acid. Different amounts and rates of initiation of translation. J Biol Chem. 1971 Dec 10;246(23):7131–7138. [PubMed] [Google Scholar]
  19. Pestka S. Antibiotics as probes of ribosome structure: binding of chloramphenicol and erythromycin to polyribosomes; effect of other antibiotics. Antimicrob Agents Chemother. 1974 Mar;5(3):255–267. doi: 10.1128/aac.5.3.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pestka S. Inhibitors of ribosome functions. Annu Rev Microbiol. 1971;25:487–562. doi: 10.1146/annurev.mi.25.100171.002415. [DOI] [PubMed] [Google Scholar]
  21. Pestka S., Rosenfeld H., Harris R., Hintikka H. Studies on transfer ribonucleic acid-ribosome complexes. XXI. Effect of antibiotics on peptidyl-puromycin synthesis by mammalian polyribosomes. J Biol Chem. 1972 Nov 10;247(21):6895–6900. [PubMed] [Google Scholar]
  22. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 8. Survey of the effect of antibiotics of N-acetyl-phenylalanyl-puromycin formation: possible mechanism of chloramphenicol action. Arch Biochem Biophys. 1970 Jan;136(1):80–88. doi: 10.1016/0003-9861(70)90329-2. [DOI] [PubMed] [Google Scholar]
  23. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XI. Antibiotic effects on phenylalanyl-oligonucleotide binding to ribosomes. Proc Natl Acad Sci U S A. 1969 Oct;64(2):709–714. doi: 10.1073/pnas.64.2.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pestka S. Studies on transfer ribonucleic acid-ribosome complexes. XIX. Effect of antibiotics on peptidyl puromycin synthesis on polyribosoms from Escherichia coli. J Biol Chem. 1972 Jul 25;247(14):4669–4678. [PubMed] [Google Scholar]
  25. Schneider J. A., Maxwell E. S. Peptidylpuromycin formation on mammalian polysomes. Studies on transpeptidation and translocation. Biochemistry. 1973 Jan 30;12(3):475–481. doi: 10.1021/bi00727a018. [DOI] [PubMed] [Google Scholar]
  26. Suttle D. P., Haralson M. A., Ravel J. M. Initiation factor 3 requirement for the formation of initiation complexes with synthetic oligonucleotides. Biochem Biophys Res Commun. 1973 Mar 17;51(2):376–382. doi: 10.1016/0006-291x(73)91268-0. [DOI] [PubMed] [Google Scholar]
  27. Tada K., Trakatellis A. C. Mechanism of action of sparsomycin on protein synthesis. Antimicrob Agents Chemother (Bethesda) 1970;10:227–230. [PubMed] [Google Scholar]
  28. Trakatellis A. C. Effect of sparsomycin on protein synthesis in the mouse liver. Proc Natl Acad Sci U S A. 1968 Mar;59(3):854–860. doi: 10.1073/pnas.59.3.854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yukioka M., Morisawa S. Enhancement of the phenylalanyl-oligonucleotide binding to the peptidyl recognition center of ribosomal peptidyltransferase and inhibition of the chloramphenicol binding to ribosomes. Biochim Biophys Acta. 1971 Dec 16;254(2):304–315. doi: 10.1016/0005-2787(71)90839-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES