Abstract
Three tRNA methyltransferases from rat liver have been fractionated and purified greater than 100-fold. These enzymes have been examined for their sensitivity to inhibition by S-adenosylhomocysteine (SAH). The methyltransferase which forms m2-guanine in the region between the dihydrouridine loop and the acceptor stem of tRNA (m2-guanine methyltransferase I) is least sensitive to SAH inhibition, with a Ki of 8 muM. The enzyme responsible for forming m2-guanine between the dihydrouridine and anticodon loops (m2-guanine methyltransferase II) has a Ki of 0.3 muM, while m1-adenine methyltransferase shows intermediate sensitivity to SAH (Ki = 2.4 muM). All three methyltransferases have similar Km's for the S-adenosylmethionine substrate (1.5-2.0 muM). These results are consistent with the hypothesis that activity of individual tRNA methyltransferases may be controlled by enzyme systems which alter cellular SAH levels.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agris P. F., Spremulli L. L., Brown G. M. tRNA methylases from HeLa cells: purification and properties of an adenine-1-methylase and a guanine-N2-methylase. Arch Biochem Biophys. 1974 May;162(1):38–47. doi: 10.1016/0003-9861(74)90102-7. [DOI] [PubMed] [Google Scholar]
- Borek E., Kerr S. J. Atypical transfer RNA's and their origin in neoplastic cells. Adv Cancer Res. 1972;15:163–190. doi: 10.1016/s0065-230x(08)60374-7. [DOI] [PubMed] [Google Scholar]
- Gross H. J., Wildenauer D. Enzymatic methylations. II. In vitro inhibition of tRNA and protein methylation by nicotinamide and isonicotinic acid hydrazide: activation of a s-adenosylmethionine-splitting enzyme in rat liver. Biochem Biophys Res Commun. 1972 Jul 11;48(1):58–64. doi: 10.1016/0006-291x(72)90343-9. [DOI] [PubMed] [Google Scholar]
- Halpern R. M., Chaney S. Q., Halpern B. C., Smith R. A. Nicotinamide: a natural inhibitor of tRNA methylase. Biochem Biophys Res Commun. 1971 Feb 19;42(4):602–607. doi: 10.1016/0006-291x(71)90530-4. [DOI] [PubMed] [Google Scholar]
- Heady J. E., Kerr S. J. Alteration of glycine N-methyltransferase activity in fetal, adult, and tumor tissues. Cancer Res. 1975 Mar;35(3):640–643. [PubMed] [Google Scholar]
- Heady J. E., Kerr S. J. Purification and characterization of glycine N-methyltransferase. J Biol Chem. 1973 Jan 10;248(1):69–72. [PubMed] [Google Scholar]
- Hildesheim J., Hildesheim R., Lederer E., Yon J. Etude de l'inhibition d'une t-ARN N 2 -guanine méthyl transférase de foie de lapin par des analogues de la S-adénosyl homocystéine. Biochimie. 1972;54(8):989–995. doi: 10.1016/s0300-9084(72)80049-x. [DOI] [PubMed] [Google Scholar]
- Kerr S. J. Competing methyltransferase systems. J Biol Chem. 1972 Jul 10;247(13):4248–4252. [PubMed] [Google Scholar]
- Kerr S. J., Heady J. E. Modulation of tRNA methyltransferase activity by competing enzyme systems. Adv Enzyme Regul. 1974;12:103–117. doi: 10.1016/0065-2571(74)90009-0. [DOI] [PubMed] [Google Scholar]
- Kraus J., Staehelin M. N2-guanine specific transfer RNA methyltransferase I from rat liver and leukemic rat spleen. Nucleic Acids Res. 1974 Nov;1(11):1455–1478. doi: 10.1093/nar/1.11.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraus J., Staehelin M. N2-guanine specific transfer RNA methyltransferase II from rat liver. Nucleic Acids Res. 1974 Nov;1(11):1479–1496. doi: 10.1093/nar/1.11.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuchino Y., Endo H. Nicotinamide and its methyltransferase as apparent inhibitors of tRNA methylase. J Biochem. 1972 Apr;71(4):719–723. [PubMed] [Google Scholar]
- Kuchino Y., Nishimura S. Methylation of Escherichia coli transfer ribonucleic acids by adenylate residue-specific transfer ribonucleic acid methylase from rat liver. Biochemistry. 1974 Aug 27;13(18):3683–3688. doi: 10.1021/bi00715a010. [DOI] [PubMed] [Google Scholar]
- Kuchino Y., Nishimura S. Nucleotide sequence specificities of guanylate residue-specific tRNA methylases from rat liver. Biochem Biophys Res Commun. 1970 Jul 27;40(2):306–313. doi: 10.1016/0006-291x(70)91010-7. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leboy P. S. Influence of polyamines and salts on changing patterns of tRNA methylation. FEBS Lett. 1971 Aug 1;16(2):117–120. doi: 10.1016/0014-5793(71)80347-2. [DOI] [PubMed] [Google Scholar]
- Leboy P. S. Stimulation of soluble ribonucleic acid methylase activity by polyamines. Biochemistry. 1970 Mar 31;9(7):1577–1584. doi: 10.1021/bi00809a016. [DOI] [PubMed] [Google Scholar]
- Pegg A. E. Methylation of purified transfer RNAs by liver extracts from normal and mestranol-treated rats. Biochim Biophys Acta. 1973 Sep 7;319(3):354–363. doi: 10.1016/0005-2787(73)90175-5. [DOI] [PubMed] [Google Scholar]
- Pegg A. E. Sites of methylation of purified transfer ribonucleic acid preparations by enzymes from normal tissues and from tumours induced by dimethylnitrosamine and 1,2-dimethylhydrazine. Biochem J. 1974 Feb;137(2):239–248. doi: 10.1042/bj1370239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegg A. E. Studies on inhibitors of mammalian tRNA methylases. FEBS Lett. 1971 Jul 15;16(1):13–16. doi: 10.1016/0014-5793(71)80672-5. [DOI] [PubMed] [Google Scholar]
- Salvatore F., Utili R., Zappia V., Shapiro S. K. Quantitative analysis of S-adenosylmethionine and S-adenosylhomocysteine in animal tissues. Anal Biochem. 1971 May;41(1):16–28. doi: 10.1016/0003-2697(71)90187-4. [DOI] [PubMed] [Google Scholar]
- Swiatek K. R., Simon L. N., Chao K. L. Nicotinamide methyltransferase and S-adenosylmethionine: 5'-methylthioadenosine hydrolase. Control of transfer ribonucleic acid methylation. Biochemistry. 1973 Nov 6;12(23):4670–4674. doi: 10.1021/bi00747a019. [DOI] [PubMed] [Google Scholar]
