Abstract
A DNA methylase has been purified 270-fold from HeLa cell nuclei by chromatography on DEAE-cellulose, phosphocellulose, and hydroxyapatite. The enzyme transfers methyl groups from S-adenosyl-L-methionine to cytosine residues in DNA. The sole product of the reaction has been identified as 5-methylcytosine. The enzyme is able to methylate homologous (HeLa) DNA, although to a lesser extent than heterologous DNA. This may be due to incomplete methylation of HeLa DNA synthesized in vivo. The HeLa enzyme can methylate single-stranded DNA, and does so to an extent three times greater than that of the corresponding double-stranded DNA. In single-stranded M. luteus DNA, at least 2.4% of the cytosine residues can be methylated in vitro by the enzyme. The enzyme also can methylate poly (dG-dC-dG-dC) and poly (dG, dC). Bilateral nearest neighbors to the 5-methylcytosine have been determined with M. luteus DNA in vitro and HeLa DNA in vivo. The 5' neighbor can be either G or C while the 3' neighbor is always G and this sequence is, thus, p(G/C)pmCpG.
Full text
PDF















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arber W. DNA modification and restriction. Prog Nucleic Acid Res Mol Biol. 1974;14(0):1–37. doi: 10.1016/s0079-6603(08)60204-4. [DOI] [PubMed] [Google Scholar]
- Berkowitz D. M., Kakefuda T., Sporn M. A simple and rapid method for the isolation of enzymatically active HeLa cell nuclei. J Cell Biol. 1969 Sep;42(3):851–854. doi: 10.1083/jcb.42.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyer H. W., Chow L. T., Dugaiczyk A., Hedgpeth J., Goodman H. M. DNA substrate site for the EcoRII restriction endonuclease and modification methylase. Nat New Biol. 1973 Jul 11;244(132):40–43. doi: 10.1038/newbio244040a0. [DOI] [PubMed] [Google Scholar]
- Brockes J. P., Brown P. R., Murray K. Nucleotide sequences at the sites of action of the deoxyribonucleic acid modification enzyme of bacteriophage P1. J Mol Biol. 1974 Sep 15;88(2):437–443. doi: 10.1016/0022-2836(74)90493-8. [DOI] [PubMed] [Google Scholar]
- Brockes J. P., Brown P. R., Murray K. The deoxyribonucleic acid modification enzyme of bacteriophage P1. Biochem J. 1972 Mar;127(1):1–10. doi: 10.1042/bj1270001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown G. M., Attardi G. Methylation of nucleic acids in HeLa cells. Biochem Biophys Res Commun. 1965 Jul 26;20(3):298–302. doi: 10.1016/0006-291x(65)90363-3. [DOI] [PubMed] [Google Scholar]
- Culp L. A., Dore E., Brown G. M. Methylated bases in DNA of animal origin. Arch Biochem Biophys. 1970 Jan;136(1):73–79. doi: 10.1016/0003-9861(70)90328-0. [DOI] [PubMed] [Google Scholar]
- Dawid I. B. 5-methylcytidylic acid: absence from mitochondrial DNA of frogs and HeLa cells. Science. 1974 Apr 5;184(4132):80–81. doi: 10.1126/science.184.4132.80. [DOI] [PubMed] [Google Scholar]
- Drahovsky D., Morris N. R. The mechanism of action of rat liver DNA methylase. 3. Nucleotide requirements for binding and methylation. Biochim Biophys Acta. 1972 Aug 25;277(2):245–250. doi: 10.1016/0005-2787(72)90404-2. [DOI] [PubMed] [Google Scholar]
- Drahovský D., Morris N. R. Mechanism of action of rat liver DNA methylase. I. Interaction with double-stranded methyl-acceptor DNA. J Mol Biol. 1971 May 14;57(3):475–489. doi: 10.1016/0022-2836(71)90104-5. [DOI] [PubMed] [Google Scholar]
- Drahovský D., Morris N. R. Mechanism of action of rat liver DNA methylase. II. Interaction with single-stranded methyl-acceptor DNA. J Mol Biol. 1971 Oct 28;61(2):343–356. doi: 10.1016/0022-2836(71)90384-6. [DOI] [PubMed] [Google Scholar]
- Dugaiczyk A., Hedgpeth J., Boyer H. W., Goodman H. M. Physical identity of the SV40 deoxyribonucleic acid sequence recognized by the Eco RI restriction endonuclease and modification methylase. Biochemistry. 1974 Jan 29;13(3):503–512. doi: 10.1021/bi00700a016. [DOI] [PubMed] [Google Scholar]
- Furuichi Y. "Methylation-coupled" transcription by virus-associated transcriptase of cytoplasmic polyhedrosis virus containing double-stranded RNA. Nucleic Acids Res. 1974 Jun;1(6):809–822. doi: 10.1093/nar/1.6.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garfin D. E., Goodman H. M. Nucleotide sequences at the cleavage sites of two restriction endonucleases from Hemophilus parainfluenzae. Biochem Biophys Res Commun. 1974 Jul 10;59(1):108–116. doi: 10.1016/s0006-291x(74)80181-6. [DOI] [PubMed] [Google Scholar]
- Gough M., Lederberg S. Methylated bases in the host-modified deoxyribonucleic acid of Escherichia coli and bacteriophage lambda. J Bacteriol. 1966 Apr;91(4):1460–1468. doi: 10.1128/jb.91.4.1460-1468.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalousek F., Morris N. R. The purification and properties of deoxyribonucleic acid methylase from rat spleen. J Biol Chem. 1969 Mar 10;244(5):1157–1163. [PubMed] [Google Scholar]
- Kieff E. D., Bachenheimer S. L., Roizman B. Size, composition, and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2. J Virol. 1971 Aug;8(2):125–132. doi: 10.1128/jvi.8.2.125-132.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LaColla P., Weissbach A. Vaccinia virus infection of HeLa cells. I. Synthesis of vaccinia DNA in host cell nuclei. J Virol. 1975 Feb;15(2):305–315. doi: 10.1128/jvi.15.2.305-315.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lautenberger J. A., Linn S. The deoxyribonucleic acid modification and restriction enzymes of Escherichia coli B. I. Purification, subunit structure, and catalytic properties of the modification methylase. J Biol Chem. 1972 Oct 10;247(19):6176–6182. [PubMed] [Google Scholar]
- Lawley P. D., Crathorn A. R., Shah S. A., Smith B. A. Biomethylation of deoxyribonucleic acid in cultured human tumour cells (HeLa). Methylated bases other than 5-methylcytosine not detected. Biochem J. 1972 Jun;128(1):133–138. doi: 10.1042/bj1280133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Low M., Hay J., Keir H. M. DNA of herpes simplex virus is not a substrate for methylation in vivo. J Mol Biol. 1969 Nov 28;46(1):205–207. doi: 10.1016/0022-2836(69)90068-0. [DOI] [PubMed] [Google Scholar]
- Marinus M. G., Morris N. R. Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol. 1973 Jun;114(3):1143–1150. doi: 10.1128/jb.114.3.1143-1150.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meselson M., Yuan R., Heywood J. Restriction and modification of DNA. Annu Rev Biochem. 1972;41:447–466. doi: 10.1146/annurev.bi.41.070172.002311. [DOI] [PubMed] [Google Scholar]
- Morris N. R., Pih K. D. The preparation of soluble DNA methylase from normal and regenerating rat liver. Cancer Res. 1971 Apr;31(4):433–440. [PubMed] [Google Scholar]
- Roy P. H., Smith H. O. DNA methylases of Hemophilus influenzae Rd. I. Purification and properties. J Mol Biol. 1973 Dec 25;81(4):427–444. doi: 10.1016/0022-2836(73)90515-9. [DOI] [PubMed] [Google Scholar]
- Roy P. H., Smith H. O. DNA methylases of Hemophilus influenzae Rd. II. Partial recognition site base sequences. J Mol Biol. 1973 Dec 25;81(4):445–459. doi: 10.1016/0022-2836(73)90516-0. [DOI] [PubMed] [Google Scholar]
- Schlabach A., Fridlender B., Bolden A., Weissbach A. DNA-dependent DNA polymerases from HeLa cell nuclei. II. Template and substrate utilization. Biochem Biophys Res Commun. 1971 Aug 20;44(4):879–885. doi: 10.1016/0006-291x(71)90793-5. [DOI] [PubMed] [Google Scholar]
- Schneiderman M. H., Billen D. Methylation rapidly reannealing DNA during the cell cycle of Chinese hamster cells. Biochim Biophys Acta. 1973 May 18;308(3):352–360. doi: 10.1016/0005-2787(73)90327-4. [DOI] [PubMed] [Google Scholar]
- Sugisaki H., Takanami M. DNA sequence restricted by restriction endonuclease AP from Haemophilus aphirophilus. Nat New Biol. 1973 Dec 5;246(153):138–140. doi: 10.1038/newbio246138a0. [DOI] [PubMed] [Google Scholar]
- TOMLINSON R. V., TENER G. M. A PROPOSED GENERAL PROCEDURE FOR ISOLATING END-GROUPS OF NUCLEIC ACIDS. Biochemistry. 1963 Jul-Aug;2:703–706. doi: 10.1021/bi00904a014. [DOI] [PubMed] [Google Scholar]
- Vanyushin B. F., Belozersky A. N., Kokurina N. A., Kadirova D. X. 5-methylcytosine and 6-methylamino-purine in bacterial DNA. Nature. 1968 Jun 15;218(5146):1066–1067. doi: 10.1038/2181066a0. [DOI] [PubMed] [Google Scholar]
- Vanyushin B. F., Tkacheva S. G., Belozersky A. N. Rare bases in animal DNA. Nature. 1970 Mar 7;225(5236):948–949. doi: 10.1038/225948a0. [DOI] [PubMed] [Google Scholar]
- van Ormondt H., Lautenberger J. A., Linn S., de Waard A. Methylated oligonucleotides derived from bacteriophage fd RF-DNA modified in vitro by E. coli B modification methylase. FEBS Lett. 1973 Jul 1;33(2):177–180. doi: 10.1016/0014-5793(73)80186-3. [DOI] [PubMed] [Google Scholar]