Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1975 Oct;2(10):1793–1804. doi: 10.1093/nar/2.10.1793

Effect of sodium bisulfite modification on the arginine acceptance of E. coli tRNA Arg.

K Chakraburtty
PMCID: PMC343547  PMID: 1103086

Abstract

Escherichia coli tRNA Arg was treated with sodium bisulfite to convert exposed cytosine residues to uracil. This treatment resulted in the loss of amino acid acceptance of the tRNA Arg with pseudo first-order reaction kinetics. The active and inactive molecules were separated after about 60e active and inactive molecules were separated after about 60 percent inactivation and analyzed for U in various positions by finger-printing of the oligonucleotides produced by nucleases. The results show that C to U base transitions in the dihydrouridine loop and in the CCA terminus have no effect on the aminoacylation of this tRNA. Deamination of a cytosine residue at the second position of the anticodon resulted in the loss of amino acid acceptor activity of arginine transfer RNA.

Full text

PDF
1793

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg P. Suppression: a subversion of genetic decoding. Harvey Lect. 1973;67:247–272. [PubMed] [Google Scholar]
  2. Chakraburtty K. Primary structure of tRNA Arg II of E. coli B. Nucleic Acids Res. 1975 Oct;2(10):1787–1792. doi: 10.1093/nar/2.10.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chambers R. W., Aoyagi S., Furukawa Y., Zawadzka H., Bhanot O. S. Inactivation of valine acceptor ativity by a C-U missense change in the anticodon of yeast valine transfer ribonucleic acid. J Biol Chem. 1973 Aug 10;248(15):5549–5551. [PubMed] [Google Scholar]
  4. Gillam I., Blew D., Warrington R. C., von Tigerstrom M., Tener G. M. A general procedure for the isolation of specific transfer ribonucleic acids. Biochemistry. 1968 Oct;7(10):3459–3468. doi: 10.1021/bi00850a022. [DOI] [PubMed] [Google Scholar]
  5. Hayatsu H., Wataya Y., Kazushige K. The addition of sodium bisulfite to uracil and to cytosine. J Am Chem Soc. 1970 Feb 11;92(3):724–726. doi: 10.1021/ja00706a062. [DOI] [PubMed] [Google Scholar]
  6. Imura N., Weiss G. B., Chambers R. W. Reconstitution of alanine acceptor activity from fragments of yeast tRNA-Ala II. Nature. 1969 Jun 21;222(5199):1147–1148. doi: 10.1038/2221147a0. [DOI] [PubMed] [Google Scholar]
  7. Kućan Z., Freude K. A., Kućan I., Chambers R. W. Aminoacylation of bisulphite-modified yeast tyrosine transfer RNA. Nat New Biol. 1971 Aug 11;232(2):177–179. doi: 10.1038/newbio232177a0. [DOI] [PubMed] [Google Scholar]
  8. Mirzabekov A. D., Lastity D., Levina E. S., Bayev A. A. Localization of two recognition sites in yeast valine tRNA I. Nat New Biol. 1971 Jan 6;229(1):21–22. doi: 10.1038/newbio229021a0. [DOI] [PubMed] [Google Scholar]
  9. Mitra S. K., Chakraburtty K., Mehler A. H. Binding of transfer RNA and arginine to the arginine transfer RNA synthetase of Escherichia coli. J Mol Biol. 1970 Apr 14;49(1):139–156. doi: 10.1016/0022-2836(70)90382-7. [DOI] [PubMed] [Google Scholar]
  10. Mitra S. K., Mehler A. H. The arginyl transfer ribonucleic acid synthetase of Escherichia coli. J Biol Chem. 1967 Dec 10;242(23):5490–5494. [PubMed] [Google Scholar]
  11. Murao K., Tanabe T., Ishii F., Namiki M., Nishimura S. Primary sequence of arginine transfer RNA from Escherichia coli. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1332–1337. doi: 10.1016/0006-291x(72)90218-5. [DOI] [PubMed] [Google Scholar]
  12. Nishimura S. Minor components in transfer RNA: their characterization, location, and function. Prog Nucleic Acid Res Mol Biol. 1972;12:49–85. [PubMed] [Google Scholar]
  13. Ofengand J., Henes C. The function of pseudouridylic acid in transfer ribonucleic acid. II. Inhibition of amino acyl transfer ribonucleic acid-ribosome complex formation by ribothymidylyl-pseudouridylyl-cytidylyl-guanosine 3'-phosphate. J Biol Chem. 1969 Nov 25;244(22):6241–6253. [PubMed] [Google Scholar]
  14. Pearson R. L., Weiss J. F., Kelmers A. D. Improved separation of transfer RNA's on polychlorotrifuoroethylene-supported reversed-phase chromatography columns. Biochim Biophys Acta. 1971 Feb 11;228(3):770–774. doi: 10.1016/0005-2787(71)90748-9. [DOI] [PubMed] [Google Scholar]
  15. Saneyoshi M., Nishimura S. Selective inactivation of amino acid acceptor and ribosome-binding activities of Escherichia coli tRNA by modification with cyanogen bromide. Biochim Biophys Acta. 1971 Aug 12;246(1):123–131. doi: 10.1016/0005-2787(71)90077-3. [DOI] [PubMed] [Google Scholar]
  16. Sanger F., Brownlee G. G., Barrell B. G. A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 1965 Sep;13(2):373–398. doi: 10.1016/s0022-2836(65)80104-8. [DOI] [PubMed] [Google Scholar]
  17. Schimmel P. R., Uhlenbeck O. C., Lewis J. B., Dickson L. A., Eldred E. W., Schreier A. A. Binding of complementary oligonucleotides to free and aminoacyl transfer ribonucleic acid synthetase bound transfer ribonucleic acid. Biochemistry. 1972 Feb 15;11(4):642–646. doi: 10.1021/bi00754a028. [DOI] [PubMed] [Google Scholar]
  18. Schulman L. H., Goddard J. P. Loss of methionine acceptor activity resulting from a base change in the anticodon of Escherichia coli formylmethionine transfer ribonucleic acid. J Biol Chem. 1973 Feb 25;248(4):1341–1345. [PubMed] [Google Scholar]
  19. Schulman L. H. Structure and function of E. coli formylmethionyl tRNA. I. Effect of modification of pyrimidine residues on aminoacyl synthetase recognition. Proc Natl Acad Sci U S A. 1970 Jun;66(2):507–514. doi: 10.1073/pnas.66.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Singhal R. P. Modification of Escherichia coli glutamate transfer ribonucleic acid with bisulfite. J Biol Chem. 1971 Sep 25;246(18):5848–5851. [PubMed] [Google Scholar]
  21. Smith J. D., Celis J. E. Mutant tyrosine transfer RNA that can be charged with glutamine. Nat New Biol. 1973 May 16;243(124):66–71. [PubMed] [Google Scholar]
  22. Squires C., Carbon J. Normal and mutant glycine transfer RNAs. Nat New Biol. 1971 Oct 27;233(43):274–277. doi: 10.1038/newbio233274a0. [DOI] [PubMed] [Google Scholar]
  23. Sundharadas G., Katze J. R., Söll D., Konigsberg W., Lengyel P. On the recognition of serine transfer RNA's specific for unrelated codons by the same seryl-transfer RNA synthetase. Proc Natl Acad Sci U S A. 1968 Oct;61(2):693–700. doi: 10.1073/pnas.61.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thiebe R., Harbers K., Zachau H. G. Aminoacylation of fragment combinations from yeast tRNA phe . Eur J Biochem. 1972 Mar 15;26(1):144–152. doi: 10.1111/j.1432-1033.1972.tb01750.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES