Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 1;68(Pt 9):m1138. doi: 10.1107/S1600536812028917

[1-(5-Bromo-2-oxidobenzyl­idene)thio­semicarbazidato-κ3 O,N 1,S](pyridine-κN)nickel(II)

Fernanda Rosi Soares Pederzolli a, Leandro Bresolin a, Johannes Beck b, Jörg Daniels b, Adriano Bof de Oliveira c,*
PMCID: PMC3435568  PMID: 22969441

Abstract

The reaction of 5-bromo­salicyl­aldehyde thio­semicarbazone with nickel acetate tetra­hydrate and pyridine yielded the title compound, [Ni(C8H6BrN3OS)(C5H5N)]. The NiII atom is four-coordinated in a square-planar environment by one deprotonated dianionic thio­semicarbazone ligand, acting in a tridentate chelating mode through N, O and S atoms forming two metalla-rings, and by one pyridine mol­ecule. The complex mol­ecules are linked into dimers by pairs of centrosym­metrical N—H⋯N inter­actions. In addition, mol­ecules are connected through inter­molecular Br⋯Br inter­actions [3.545 (1) Å], forming chains along the b-axis direction.

Related literature  

For the synthesis of 5-bromo­salicyl­aldehyde thio­semi­carba­zones and for the anti­bacterial activity of their complexes, see: Joseph et al. (2010). For the crystal structure of 5-bromo­salicyl­aldehyde thio­semicarbazone, see: Kargar et al. (2010). For the crystal structure of an NiII complex with a similar coordination environment, see: Güveli et al. (2009). For the coordination chemistry of thio­semicarbazone derivatives, see: Lobana et al. (2009).graphic file with name e-68-m1138-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C8H6BrN3OS)(C5H5N)]

  • M r = 409.94

  • Monoclinic, Inline graphic

  • a = 12.2447 (4) Å

  • b = 4.1135 (1) Å

  • c = 31.1380 (11) Å

  • β = 112.646 (1)°

  • V = 1447.46 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.25 mm−1

  • T = 293 K

  • 0.93 × 0.10 × 0.05 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.443, T max = 0.830

  • 13946 measured reflections

  • 3224 independent reflections

  • 2697 reflections with I > 2σ(I)

  • R int = 0.051

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.083

  • S = 1.05

  • 3224 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028917/zl2486sup1.cif

e-68-m1138-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028917/zl2486Isup2.hkl

e-68-m1138-Isup2.hkl (158.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯N2i 0.78 2.31 3.095 (3) 178

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefully acknowledge financial support through the DECIT/SCTIE-MS-CNPq-FAPERGS-Pronem-# 11/2029–1 and PRONEX-CNPq-FAPERGS projects.

supplementary crystallographic information

Comment

Thiosemicarbazone derivatives have a wide range of applications in biological inorganic chemistry and a very interesting coordination chemistry (Lobana et al., 2009). For example, CuII and NiII complexes with 5-bromosalicylaldehyde thiosemicarbazone show antibacterial activity against Staphylococcus aureus and Escherichia coli (Joseph et al., 2010). As part of our study of thiosemicarbazone derivatives, we report herein the synthesis and the crystal structure of a new NiII complex with 5-bromosalicylaldehyde thiosemicarbazone. In the title compound, in which the molecular structure unit matches the asymmetric unit, the NiII ion is coordinated in a square planar environment by one deprotonated dianionic 5-bromosalicylaldehyde thiosemicarbazone and one pyridine ligand (Fig. 1). The selected bond angles formed between donor atoms trough the Ni atom are N1—Ni1—N4 = 177.00 (10)° and O1—Ni1—S1 = 176.46 (6)°, and show a slightly distorted coordination environment. The thiosemicarbazone ligand is coordinated to the NiII ion in a tridentate chelating mode, forming five- and six-membered rings, as a "NOS" donor with the O/S atoms trans to each other, while the N1 azomethine atom is trans to the N4 atom from the pyridine ligand.

The acidic hydrogen of the hydrazine fragment is lost by the reaction with KOH, which is in agreement with thiosemicarbazone derivatives prepared from aldehydes or ketones. The negative charge is delocalized over the C—N—N—C—S fragment as indicated by their intermediate bond distances. The imine and thioamide C—N distances indicate considerable double bond character, while the C—S distance is consistent with increased single bond character. These distances are C7—N1 = 1.295 (3) Å, N1—N2 = 1.403 (3) Å, N2—C8 = 1.289 (4) Å and C8—S1 = 1.735 (3) Å. The hydrogen of the hydroxyl group is also deprotonated with KOH, resulting in the dianionic form of the ligand.

The ligand shows a Z—E—E—Z conformation for the donor atoms about the C1—C7/C7—N1/N1—N2/N2—C8 bonds and the mean deviations from the least squares planes for the chelated fragments Ni1/N1/C7/C1/C2/O1 and Ni1/N1/N2/C8/S1 amount to 0.0286 (15) Å for N1 and 0.0170 (12) Å for N1, respectively, and the dihedral angle between the two planes is 2.97 (11)°. The Z—E—E—Z conformation is also observed for the free ligand (Kargar et al., 2010) as well as for a complex with similar coordination environment (Güveli et al., 2009).

Both ligands are almost planar (Fig. 1 and Fig. 2) and the maximum deviation from the least squares plane through all non-hydrogen atoms for the deprotonated thiosemicarbazone fragment C1/C2/C3/C4/C5/C6/C7/C8/Br1/N1/N2/N3/O1/S1 and for the pyridine molecule C9/C10/C11/C12/C13/N4 amount to 0.0668 (25) Å for C7 and 0.0059 (21) Å for C9, respectively, and the dihedral angle between the two planes is 61.15 (6)°.

The molecules are linked by pairs of centrosymmetrical N—H···N interactions (Fig. 2 and Table 1; N3—H5···N2i) forming a dimeric molecular structure, which stabilizes the crystal packing. Symmetry codes: (i) -x, -y + 1, -z.

The crystal structure shows that molecules are additionally connected through intermolecular Br···Br interactions into chains along the crystallographic b direction (Fig. 3). The Br···Br distances amount to 3.545 (1) Å, which are shorter than the sum of the van der Waals radii for Br atoms (3.70 Å).

Experimental

Starting materials were commercially available and were used without further purification. The synthesis of 5-bromosalicylaldehyde thiosemicarbazone was adapted from a procedure reported previously (Joseph et al., 2010). 5-Bromosalicylaldehyde thiosemicarbazone (0.5 mmol) was dissolved in tetrahydrofurane (50 ml) and treated with one KOH pellet. After 30 min stirring under slight warming to 333 K, the solution was filtered and added to a nickel acetate tetrahydrate (0.5 mmol) solution in pyridine (10 ml). The reaction mixture was refluxed for 4 h under continuous stirring and showed a brown-red colour. Brown-red crystals of the complex, suitable for X-ray analysis, were obtained after six weeks by adding a 3:1 mixture of dimethylformamide and toluene (80 ml) to the reaction solution.

Refinement

H atoms attached to C atoms were positioned with idealized geometry and were refined isotropic with Ueq(H) set to 1.2 times of the Ueq(C) using a riding model with C—H = 0.93 Å. H atoms attached to N atoms atoms were positioned with idealized geometry and were refined isotropically with Ueq(H) set to 1.2 times of Ueq(N) using a riding model with N3—H1 = 0.7822 Å and N3—H2 = 0.8025 Å.

Figures

Fig. 1.

Fig. 1.

: The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 40% probability level.

Fig. 2.

Fig. 2.

: Molecules of the title compound connected through pairs of inversion symmetric N—H···N interactions. Hydrogen bonding is indicated by dashed lines. Symmetry code: (i) -x, -y + 1, -z.

Fig. 3.

Fig. 3.

: Molecules of the title compound connected through intermolecular Br···Br interactions into chains along the crystallographic b direction. The Br···Br distances amount to 3.545 (1) Å and the interactions are indicated by dashed lines.

Crystal data

[Ni(C8H6BrN3OS)(C5H5N)] F(000) = 816
Mr = 409.94 Dx = 1.881 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 17227 reflections
a = 12.2447 (4) Å θ = 2.9–27.5°
b = 4.1135 (1) Å µ = 4.25 mm1
c = 31.1380 (11) Å T = 293 K
β = 112.646 (1)° Needle, red
V = 1447.46 (8) Å3 0.93 × 0.10 × 0.05 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 3224 independent reflections
Radiation source: fine-focus sealed tube, Bruker Kappa CCD 2697 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.051
Detector resolution: 9 pixels mm-1 θmax = 27.6°, θmin = 3.3°
CCD rotation images, thick slices scans h = −15→15
Absorption correction: multi-scan (Blessing, 1995) k = −5→5
Tmin = 0.443, Tmax = 0.830 l = −40→40
13946 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.6555P] where P = (Fo2 + 2Fc2)/3
3224 reflections (Δ/σ)max = 0.001
190 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.66 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.37247 (2) 0.72025 (7) 0.228104 (10) 0.04622 (11)
Ni1 0.80812 (3) −0.06339 (9) 0.089703 (11) 0.03527 (11)
S1 0.71884 (6) −0.35252 (19) 0.02859 (2) 0.04380 (17)
O1 0.87955 (16) 0.1736 (5) 0.14418 (7) 0.0419 (4)
N1 0.93997 (18) −0.0757 (5) 0.07408 (7) 0.0339 (4)
N2 0.9399 (2) −0.2507 (6) 0.03540 (8) 0.0403 (5)
N3 0.8245 (2) −0.5541 (7) −0.02746 (9) 0.0519 (6)
H1 0.8831 −0.6069 −0.03 0.062*
H2 0.7769 −0.6986 −0.0334 0.062*
N4 0.67067 (19) −0.0743 (6) 0.10494 (8) 0.0383 (5)
C1 1.0684 (2) 0.2490 (6) 0.13889 (9) 0.0350 (5)
C2 0.9877 (2) 0.2887 (6) 0.16117 (9) 0.0357 (5)
C3 1.0269 (2) 0.4575 (7) 0.20359 (10) 0.0423 (6)
H3 0.9751 0.4858 0.2187 0.051*
C4 1.1399 (2) 0.5829 (7) 0.22359 (10) 0.0428 (6)
H4 1.1642 0.6923 0.2519 0.051*
C5 1.2167 (2) 0.5430 (6) 0.20077 (9) 0.0377 (5)
C6 1.1830 (2) 0.3830 (7) 0.15955 (10) 0.0377 (5)
H6 1.2358 0.3616 0.1448 0.045*
C7 1.0394 (2) 0.0704 (7) 0.09658 (9) 0.0380 (6)
H7 1.0971 0.0579 0.0841 0.046*
C8 0.8393 (2) −0.3869 (7) 0.01258 (9) 0.0390 (6)
C9 0.5660 (2) 0.0532 (7) 0.07772 (10) 0.0439 (6)
H9 0.558 0.1437 0.0493 0.053*
C10 0.4699 (3) 0.0547 (9) 0.09040 (12) 0.0553 (8)
H10 0.3986 0.1475 0.0711 0.066*
C11 0.4810 (3) −0.0826 (9) 0.13187 (12) 0.0586 (8)
H11 0.4172 −0.0845 0.1411 0.07*
C12 0.5869 (3) −0.2171 (8) 0.15973 (11) 0.0569 (8)
H12 0.5955 −0.3131 0.1879 0.068*
C13 0.6808 (3) −0.2087 (8) 0.14557 (10) 0.0476 (7)
H13 0.7528 −0.2985 0.1647 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03290 (15) 0.0510 (2) 0.05011 (18) −0.00359 (11) 0.01082 (12) −0.00312 (13)
Ni1 0.03052 (17) 0.0412 (2) 0.03447 (17) 0.00019 (13) 0.01296 (13) 0.00106 (13)
S1 0.0378 (3) 0.0507 (4) 0.0424 (4) −0.0046 (3) 0.0148 (3) −0.0052 (3)
O1 0.0321 (9) 0.0540 (12) 0.0406 (10) −0.0025 (8) 0.0151 (8) −0.0049 (9)
N1 0.0352 (10) 0.0337 (11) 0.0336 (10) 0.0034 (8) 0.0141 (9) 0.0010 (9)
N2 0.0419 (12) 0.0419 (13) 0.0399 (12) 0.0010 (10) 0.0189 (10) −0.0039 (10)
N3 0.0488 (14) 0.0583 (17) 0.0502 (14) −0.0046 (12) 0.0210 (12) −0.0152 (12)
N4 0.0346 (11) 0.0443 (13) 0.0356 (11) −0.0030 (9) 0.0130 (9) −0.0002 (9)
C1 0.0327 (12) 0.0355 (13) 0.0367 (13) 0.0030 (10) 0.0132 (10) 0.0025 (10)
C2 0.0297 (11) 0.0387 (14) 0.0389 (13) 0.0030 (10) 0.0134 (10) 0.0046 (11)
C3 0.0359 (13) 0.0526 (17) 0.0410 (13) 0.0018 (12) 0.0179 (11) −0.0023 (12)
C4 0.0387 (13) 0.0475 (16) 0.0393 (13) 0.0025 (12) 0.0118 (11) −0.0041 (12)
C5 0.0289 (11) 0.0358 (14) 0.0438 (14) 0.0008 (10) 0.0089 (10) 0.0030 (11)
C6 0.0311 (12) 0.0391 (14) 0.0443 (14) 0.0020 (10) 0.0159 (11) 0.0018 (11)
C7 0.0348 (12) 0.0405 (15) 0.0426 (14) 0.0023 (11) 0.0191 (11) 0.0007 (11)
C8 0.0431 (14) 0.0363 (14) 0.0376 (13) 0.0049 (11) 0.0157 (11) 0.0021 (11)
C9 0.0365 (13) 0.0535 (18) 0.0393 (14) 0.0004 (12) 0.0120 (11) 0.0060 (12)
C10 0.0349 (14) 0.072 (2) 0.0588 (18) 0.0048 (14) 0.0179 (13) 0.0068 (16)
C11 0.0478 (17) 0.076 (2) 0.064 (2) −0.0003 (16) 0.0339 (16) 0.0031 (17)
C12 0.062 (2) 0.071 (2) 0.0460 (17) −0.0009 (17) 0.0303 (16) 0.0069 (16)
C13 0.0418 (14) 0.0607 (19) 0.0390 (14) 0.0018 (13) 0.0141 (12) 0.0074 (13)

Geometric parameters (Å, º)

Br1—C5 1.909 (3) C2—C3 1.403 (4)
Ni1—N1 1.858 (2) C3—C4 1.380 (4)
Ni1—O1 1.8576 (19) C3—H3 0.93
Ni1—N4 1.917 (2) C4—C5 1.390 (4)
Ni1—S1 2.1516 (8) C4—H4 0.93
S1—C8 1.735 (3) C5—C6 1.358 (4)
O1—C2 1.311 (3) C6—H6 0.93
N1—C7 1.295 (3) C7—H7 0.93
N1—N2 1.403 (3) C9—C10 1.378 (4)
N2—C8 1.289 (4) C9—H9 0.93
N3—C8 1.373 (4) C10—C11 1.367 (5)
N3—H1 0.7822 C10—H10 0.93
N3—H2 0.8025 C11—C12 1.369 (5)
N4—C9 1.341 (4) C11—H11 0.93
N4—C13 1.342 (4) C12—C13 1.381 (4)
C1—C6 1.411 (4) C12—H12 0.93
C1—C2 1.419 (3) C13—H13 0.93
C1—C7 1.429 (4)
N1—Ni1—O1 95.87 (9) C5—C4—H4 120.5
N1—Ni1—N4 177.00 (10) C6—C5—C4 121.4 (2)
O1—Ni1—N4 86.32 (9) C6—C5—Br1 119.63 (19)
N1—Ni1—S1 87.15 (7) C4—C5—Br1 118.9 (2)
O1—Ni1—S1 176.46 (6) C5—C6—C1 120.5 (2)
N4—Ni1—S1 90.60 (7) C5—C6—H6 119.8
C8—S1—Ni1 95.77 (10) C1—C6—H6 119.8
C2—O1—Ni1 127.26 (17) N1—C7—C1 125.8 (2)
C7—N1—N2 113.1 (2) N1—C7—H7 117.1
C7—N1—Ni1 125.23 (18) C1—C7—H7 117.1
N2—N1—Ni1 121.70 (16) N2—C8—N3 118.8 (2)
C8—N2—N1 112.4 (2) N2—C8—S1 122.9 (2)
C8—N3—H1 115.1 N3—C8—S1 118.2 (2)
C8—N3—H2 114.2 N4—C9—C10 122.3 (3)
H1—N3—H2 112.6 N4—C9—H9 118.8
C9—N4—C13 118.4 (2) C10—C9—H9 118.8
C9—N4—Ni1 123.42 (18) C11—C10—C9 118.9 (3)
C13—N4—Ni1 118.17 (19) C11—C10—H10 120.5
C6—C1—C2 119.3 (2) C9—C10—H10 120.5
C6—C1—C7 118.2 (2) C10—C11—C12 119.4 (3)
C2—C1—C7 122.5 (2) C10—C11—H11 120.3
O1—C2—C3 119.0 (2) C12—C11—H11 120.3
O1—C2—C1 123.2 (2) C11—C12—C13 119.3 (3)
C3—C2—C1 117.8 (2) C11—C12—H12 120.4
C4—C3—C2 122.0 (2) C13—C12—H12 120.4
C4—C3—H3 119 N4—C13—C12 121.7 (3)
C2—C3—H3 119 N4—C13—H13 119.2
C3—C4—C5 118.9 (3) C12—C13—H13 119.2
C3—C4—H4 120.5
N1—Ni1—S1—C8 1.82 (11) C3—C4—C5—C6 −0.3 (4)
N4—Ni1—S1—C8 −176.20 (12) C3—C4—C5—Br1 179.4 (2)
N1—Ni1—O1—C2 1.9 (2) C4—C5—C6—C1 −0.7 (4)
N4—Ni1—O1—C2 179.8 (2) Br1—C5—C6—C1 179.7 (2)
O1—Ni1—N1—C7 −4.3 (2) C2—C1—C6—C5 1.3 (4)
S1—Ni1—N1—C7 177.6 (2) C7—C1—C6—C5 −177.2 (2)
O1—Ni1—N1—N2 175.74 (19) N2—N1—C7—C1 −175.7 (2)
S1—Ni1—N1—N2 −2.40 (18) Ni1—N1—C7—C1 4.3 (4)
C7—N1—N2—C8 −178.1 (2) C6—C1—C7—N1 177.7 (3)
Ni1—N1—N2—C8 1.9 (3) C2—C1—C7—N1 −0.7 (4)
O1—Ni1—N4—C9 119.2 (2) N1—N2—C8—N3 177.0 (2)
S1—Ni1—N4—C9 −62.5 (2) N1—N2—C8—S1 0.2 (3)
O1—Ni1—N4—C13 −58.9 (2) Ni1—S1—C8—N2 −1.6 (3)
S1—Ni1—N4—C13 119.3 (2) Ni1—S1—C8—N3 −178.4 (2)
Ni1—O1—C2—C3 −178.72 (19) C13—N4—C9—C10 1.0 (4)
Ni1—O1—C2—C1 0.8 (4) Ni1—N4—C9—C10 −177.1 (2)
C6—C1—C2—O1 179.6 (2) N4—C9—C10—C11 −0.9 (5)
C7—C1—C2—O1 −2.0 (4) C9—C10—C11—C12 0.1 (5)
C6—C1—C2—C3 −0.9 (4) C10—C11—C12—C13 0.6 (5)
C7—C1—C2—C3 177.5 (2) C9—N4—C13—C12 −0.2 (4)
O1—C2—C3—C4 179.5 (3) Ni1—N4—C13—C12 178.0 (2)
C1—C2—C3—C4 0.0 (4) C11—C12—C13—N4 −0.6 (5)
C2—C3—C4—C5 0.6 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H1···N2i 0.78 2.31 3.095 (3) 178

Symmetry code: (i) −x+2, −y−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2486).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Güveli, S., Bal-Demirci, T., Özdemir, N. & Ülküseven, B. (2009). Transition Met. Chem. 34, 383–388.
  4. Joseph, J., Mary, N. L. & Sidambaram, R. (2010). Synth. React. Inorg. Met. Org. Chem. 40, 930–933.
  5. Kargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o2999. [DOI] [PMC free article] [PubMed]
  6. Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
  7. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028917/zl2486sup1.cif

e-68-m1138-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028917/zl2486Isup2.hkl

e-68-m1138-Isup2.hkl (158.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES