Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 4;68(Pt 9):m1144. doi: 10.1107/S1600536812033946

(Di-2-pyridyl­amine-κ2 N 2,N 2′)diiodidopalladium(II)

Kwang Ha a,*
PMCID: PMC3435574  PMID: 22969447

Abstract

The PdII ion in the title complex, [PdI2(C10H9N3)], is four-coordinated in a distorted square-planar environment defined by the two pyridine N atoms of the chelating di-2-pyridyl­amine (dpa) ligand and two I anions. The dpa ligand is not planar, the dihedral angle between the pyridine rings being 51.2 (2)°. In the crystal, pairs of complex mol­ecules are assembled through inter­molecular N—H⋯I hydrogen bonds into dimeric species. The complexes are stacked in columns along the b axis and display several inter­molecular π–π inter­actions between the pyridine rings, with a shortest ring centroid–centroid distance of 3.957 (3) Å.

Related literature  

For the crystal structure of the related PtII complex [PtI2(dpa)], see: Ha (2012).graphic file with name e-68-m1144-scheme1.jpg

Experimental  

Crystal data  

  • [PdI2(C10H9N3)]

  • M r = 531.40

  • Monoclinic, Inline graphic

  • a = 8.2846 (8) Å

  • b = 9.7782 (9) Å

  • c = 16.5355 (14) Å

  • β = 102.344 (2)°

  • V = 1308.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.11 mm−1

  • T = 200 K

  • 0.18 × 0.14 × 0.08 mm

Data collection  

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.797, T max = 1.000

  • 9135 measured reflections

  • 3152 independent reflections

  • 2304 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.065

  • S = 1.01

  • 3152 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 1.17 e Å−3

  • Δρmin = −0.78 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033946/tk5137sup1.cif

e-68-m1144-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033946/tk5137Isup2.hkl

e-68-m1144-Isup2.hkl (154.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Pd1—N1 2.068 (4)
Pd1—N3 2.067 (4)
Pd1—I1 2.5780 (5)
Pd1—I2 2.5957 (5)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯I2i 0.92 2.80 3.656 (4) 155

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

supplementary crystallographic information

Comment

The title complex, [PdI2(dpa)] (dpa = di-2-pyridylamine, C10H9N3), is isomorphous with the previously reported PtII complex [PtI2(dpa)] (Ha, 2012).

The PdII ion is four-coordinated in a distorted square-planar environment defined by the two pyridine N atoms of the chelating dpa ligand and two I- anions (Fig. 1). In the crystal, the dpa ligand is not planar. The dihedral angle between the least-squares planes of the pyridine rings is 51.2 (2)°. The nearly planar pyridine rings [maximum deviation = 0.031 (3) Å] are considerably inclined to the least-squares plane of the PdI2N2 unit [maximum deviation = 0.081 (1) Å], making dihedral angles of 46.5 (1)° and 51.6 (1)°. The Pd—N and Pd—I bond lengths are nearly equivalent, respectively (Table 1). Pairs of complex molecules are assembled through intermolecular N—H···I hydrogen bonds into dimeric species. (Fig. 2 and Table 2). The complexes are stacked in columns along the b axis and display several intermolecular π-π interactions between the pyridine rings, with a shortest ring centroid-centroid distance of 3.957 (3) Å.

Experimental

To a solution of Na2PdCl4 (0.1461 g, 0.497 mmol) and KI (0.7811 g, 4.705 mmol) in MeOH (30 ml) was added di-2-pyridylamine (0.0862 g, 0.519 mmol) followed by stirring at room temperature for 5 h. The formed precipitate was separated by filtration and washed with H2O and acetone, and dried at 50 °C, to give a dark-orange powder (0.2322 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3NO2 solution held at room temperature.

Refinement

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The nitrogen-bound H atom was located from a Fourier difference map and then allowed to ride on its parent atom in the final cycles of refinement with N—H = 0.92 Å and Uiso(H) = 1.5Ueq(N). The highest peak (1.17 e Å-3) and the deepest hole (-0.78 e Å-3) in the difference Fourier map are located 1.99 Å and 0.82 Å, respectively, from the atoms H4 and I2. A number of reflections were omitted from the final cycles of refinement owing to poor agreement.

Figures

Fig. 1.

Fig. 1.

A structure detail of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.

Fig. 2.

Fig. 2.

A view of the unit-cell contents of the title complex. Intermolecular N—H···I hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[PdI2(C10H9N3)] F(000) = 968
Mr = 531.40 Dx = 2.697 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4274 reflections
a = 8.2846 (8) Å θ = 2.4–28.3°
b = 9.7782 (9) Å µ = 6.11 mm1
c = 16.5355 (14) Å T = 200 K
β = 102.344 (2)° Block, red
V = 1308.5 (2) Å3 0.18 × 0.14 × 0.08 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 3152 independent reflections
Radiation source: fine-focus sealed tube 2304 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
φ and ω scans θmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→11
Tmin = 0.797, Tmax = 1.000 k = −13→11
9135 measured reflections l = −22→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0239P)2] where P = (Fo2 + 2Fc2)/3
3152 reflections (Δ/σ)max = 0.001
145 parameters Δρmax = 1.17 e Å3
0 restraints Δρmin = −0.78 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.07287 (4) 0.84262 (4) 0.15317 (2) 0.02380 (10)
I1 −0.13829 (4) 0.86318 (4) 0.24664 (2) 0.03867 (11)
I2 0.24276 (4) 1.04417 (4) 0.230708 (19) 0.03719 (11)
N1 −0.0699 (5) 0.6997 (4) 0.0777 (2) 0.0248 (9)
N2 −0.0086 (5) 0.8273 (4) −0.0325 (2) 0.0273 (9)
H2N −0.0376 0.8473 −0.0881 0.041*
N3 0.2299 (5) 0.8278 (4) 0.0718 (2) 0.0269 (9)
C1 −0.1482 (6) 0.5937 (5) 0.1053 (3) 0.0288 (11)
H1 −0.1266 0.5751 0.1630 0.035*
C2 −0.2578 (6) 0.5121 (5) 0.0525 (3) 0.0340 (12)
H2 −0.3109 0.4381 0.0735 0.041*
C3 −0.2900 (6) 0.5389 (5) −0.0318 (3) 0.0336 (12)
H3 −0.3679 0.4853 −0.0692 0.040*
C4 −0.2078 (6) 0.6437 (5) −0.0604 (3) 0.0299 (11)
H4 −0.2266 0.6625 −0.1180 0.036*
C5 −0.0973 (5) 0.7219 (5) −0.0047 (3) 0.0227 (10)
C6 0.1623 (6) 0.8357 (5) −0.0085 (3) 0.0267 (11)
C7 0.2600 (6) 0.8499 (5) −0.0670 (3) 0.0301 (12)
H7 0.2097 0.8615 −0.1238 0.036*
C8 0.4280 (6) 0.8469 (5) −0.0424 (3) 0.0352 (13)
H8 0.4961 0.8574 −0.0815 0.042*
C9 0.4975 (6) 0.8284 (5) 0.0412 (3) 0.0343 (12)
H9 0.6138 0.8203 0.0597 0.041*
C10 0.3965 (6) 0.8219 (5) 0.0962 (3) 0.0293 (11)
H10 0.4446 0.8130 0.1535 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.0271 (2) 0.0261 (2) 0.01677 (18) −0.00202 (16) 0.00160 (15) 0.00029 (15)
I1 0.0427 (2) 0.0497 (3) 0.02587 (19) 0.00181 (17) 0.01239 (16) −0.00231 (16)
I2 0.0485 (2) 0.0335 (2) 0.02414 (18) −0.00877 (16) −0.00439 (15) −0.00119 (14)
N1 0.027 (2) 0.023 (2) 0.023 (2) 0.0005 (17) 0.0030 (17) 0.0009 (17)
N2 0.030 (2) 0.031 (3) 0.018 (2) −0.0062 (18) 0.0007 (17) 0.0053 (17)
N3 0.030 (2) 0.026 (2) 0.023 (2) −0.0013 (18) 0.0020 (18) −0.0016 (17)
C1 0.032 (3) 0.024 (3) 0.032 (3) 0.002 (2) 0.010 (2) 0.005 (2)
C2 0.036 (3) 0.028 (3) 0.039 (3) −0.007 (2) 0.011 (2) −0.002 (2)
C3 0.032 (3) 0.029 (3) 0.039 (3) −0.009 (2) 0.006 (2) −0.011 (2)
C4 0.042 (3) 0.028 (3) 0.019 (2) −0.001 (2) 0.006 (2) −0.004 (2)
C5 0.024 (2) 0.026 (3) 0.018 (2) 0.002 (2) 0.0038 (19) −0.0044 (19)
C6 0.036 (3) 0.019 (3) 0.025 (3) 0.000 (2) 0.005 (2) 0.000 (2)
C7 0.043 (3) 0.023 (3) 0.028 (3) −0.004 (2) 0.015 (2) 0.003 (2)
C8 0.040 (3) 0.029 (3) 0.043 (3) −0.004 (2) 0.022 (3) −0.003 (2)
C9 0.031 (3) 0.029 (3) 0.043 (3) 0.000 (2) 0.008 (2) 0.001 (2)
C10 0.024 (2) 0.022 (3) 0.038 (3) 0.000 (2) −0.001 (2) −0.001 (2)

Geometric parameters (Å, º)

Pd1—N1 2.068 (4) C2—H2 0.9500
Pd1—N3 2.067 (4) C3—C4 1.370 (7)
Pd1—I1 2.5780 (5) C3—H3 0.9500
Pd1—I2 2.5957 (5) C4—C5 1.382 (6)
N1—C5 1.351 (5) C4—H4 0.9500
N1—C1 1.353 (6) C6—C7 1.394 (6)
N2—C6 1.389 (6) C7—C8 1.365 (7)
N2—C5 1.399 (6) C7—H7 0.9500
N2—H2N 0.9200 C8—C9 1.390 (7)
N3—C6 1.329 (6) C8—H8 0.9500
N3—C10 1.354 (6) C9—C10 1.362 (7)
C1—C2 1.372 (7) C9—H9 0.9500
C1—H1 0.9500 C10—H10 0.9500
C2—C3 1.388 (7)
N3—Pd1—N1 85.31 (15) C2—C3—H3 120.5
N3—Pd1—I1 176.37 (11) C3—C4—C5 119.4 (4)
N1—Pd1—I1 92.33 (10) C3—C4—H4 120.3
N3—Pd1—I2 91.40 (11) C5—C4—H4 120.3
N1—Pd1—I2 172.21 (11) N1—C5—C4 121.9 (4)
I1—Pd1—I2 90.598 (16) N1—C5—N2 117.5 (4)
C5—N1—C1 118.3 (4) C4—C5—N2 120.6 (4)
C5—N1—Pd1 116.8 (3) N3—C6—N2 117.9 (4)
C1—N1—Pd1 124.6 (3) N3—C6—C7 121.1 (4)
C6—N2—C5 121.6 (4) N2—C6—C7 121.0 (4)
C6—N2—H2N 107.8 C8—C7—C6 119.8 (5)
C5—N2—H2N 116.2 C8—C7—H7 120.1
C6—N3—C10 119.0 (4) C6—C7—H7 120.1
C6—N3—Pd1 117.2 (3) C7—C8—C9 118.6 (5)
C10—N3—Pd1 123.6 (3) C7—C8—H8 120.7
N1—C1—C2 122.1 (4) C9—C8—H8 120.7
N1—C1—H1 118.9 C10—C9—C8 119.1 (5)
C2—C1—H1 118.9 C10—C9—H9 120.4
C1—C2—C3 119.2 (5) C8—C9—H9 120.4
C1—C2—H2 120.4 N3—C10—C9 122.1 (5)
C3—C2—H2 120.4 N3—C10—H10 118.9
C4—C3—C2 119.1 (5) C9—C10—H10 118.9
C4—C3—H3 120.5
N3—Pd1—N1—C5 −46.2 (3) C3—C4—C5—N1 −1.3 (7)
I1—Pd1—N1—C5 131.0 (3) C3—C4—C5—N2 178.3 (4)
N3—Pd1—N1—C1 139.7 (4) C6—N2—C5—N1 52.2 (6)
I1—Pd1—N1—C1 −43.0 (4) C6—N2—C5—C4 −127.4 (5)
N1—Pd1—N3—C6 48.2 (4) C10—N3—C6—N2 173.5 (4)
I2—Pd1—N3—C6 −124.7 (3) Pd1—N3—C6—N2 −11.9 (6)
N1—Pd1—N3—C10 −137.4 (4) C10—N3—C6—C7 −5.6 (7)
I2—Pd1—N3—C10 49.7 (4) Pd1—N3—C6—C7 169.1 (4)
C5—N1—C1—C2 −2.3 (7) C5—N2—C6—N3 −50.6 (6)
Pd1—N1—C1—C2 171.7 (4) C5—N2—C6—C7 128.5 (5)
N1—C1—C2—C3 −0.1 (8) N3—C6—C7—C8 4.2 (7)
C1—C2—C3—C4 1.9 (8) N2—C6—C7—C8 −174.8 (5)
C2—C3—C4—C5 −1.2 (8) C6—C7—C8—C9 0.6 (8)
C1—N1—C5—C4 3.0 (7) C7—C8—C9—C10 −3.9 (8)
Pd1—N1—C5—C4 −171.4 (4) C6—N3—C10—C9 2.2 (7)
C1—N1—C5—N2 −176.6 (4) Pd1—N3—C10—C9 −172.1 (4)
Pd1—N1—C5—N2 9.0 (5) C8—C9—C10—N3 2.6 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N···I2i 0.92 2.80 3.656 (4) 155

Symmetry code: (i) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5137).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Ha, K. (2012). Acta Cryst. E68, m479. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033946/tk5137sup1.cif

e-68-m1144-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033946/tk5137Isup2.hkl

e-68-m1144-Isup2.hkl (154.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES