Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 4;68(Pt 9):m1153–m1154. doi: 10.1107/S1600536812033880

[μ-N,N′-Bis(2-amino­eth­yl)ethane-1,2-diamine-κ4 N 1,N 1′:N 2,N 2′]bis­{[N,N′-bis­(2-amino­eth­yl)ethane-1,2-diamine-κ4 N,N′,N′′,N′′′]cadmium} tetra­kis­(perchlorate)

Hamid Goudarziafshar a,*, Yunes Abbasityula a, Václav Eigner b,c, Michal Dušek c
PMCID: PMC3435582  PMID: 22969455

Abstract

The centrosymmetric dinuclear cadmium title complex, [Cd2(C6H18N4)3](ClO4)4, was obtained by the reaction of N,N′-bis­(2-amino­eth­yl)ethane-1,2-diamine (trien) with Cd(NO3)2·4H2O and sodium perchlorate in methanol. The CdII cation is coordinated by four N atoms of a non-bridging trien ligand and by two N atoms of a bridging trien ligand in a slightly distorted octa­hedral coordination geometry. The bridging ligand shares another two N atoms with a neighboring symmetry-equivalent CdII cation. The structure displays C—H⋯O and N—H⋯O hydrogen bonding. The perchlorate anion is disordered over two sets of sites in a 0.854 (7): 0.146 (7) ratio.

Related literature  

Polyamines are an important class of N-donor ligands, particularly for transition metals, see: Patel et al. (2007); Blackman (2005). For polynuclear complexes, see: Gustafsson et al. (2010); Ambrosi et al. (2009); You et al. (2011). For polynuclear complexes of cadmium, see: Evans & Lin (2002); For background to the use of the trien ligand in complexation, see: Cai et al. (2001a ,b ); Buckingham et al. (1974, 1975); Chowdhury et al. (2007). Buckingham & Jones (1965); Shinohara et al. (1991); He (2009); Patel et al. (2008); Anderson et al. (1977); Shoukry et al. (1998); Hu et al. (2000). For dinuclear Cd complexes, see: Das et al. (2010); Nie et al. (2010); Wang et al. (2011); Sun et al. (2010). For details of the preparation, see: Harrowfield et al. (1996).graphic file with name e-68-m1153-scheme1.jpg

Experimental  

Crystal data  

  • [Cd2(C6H18N4)3](ClO4)4

  • M r = 1061.3

  • Monoclinic, Inline graphic

  • a = 8.8056 (2) Å

  • b = 15.0259 (3) Å

  • c = 14.7516 (3) Å

  • β = 95.4420 (17)°

  • V = 1943.02 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 120 K

  • 0.70 × 0.51 × 0.33 mm

Data collection  

  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2012) T min = 0.509, T max = 0.738

  • 31295 measured reflections

  • 4952 independent reflections

  • 4373 reflections with I > 3σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.106

  • S = 2.02

  • 4952 reflections

  • 269 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.92 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033880/ru2040sup1.cif

e-68-m1153-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033880/ru2040Isup2.hkl

e-68-m1153-Isup2.hkl (218.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—N1 2.362 (2)
Cd1—N4 2.390 (3)
Cd1—N7 2.377 (3)
Cd1—N10 2.380 (3)
Cd1—N11 2.374 (3)
Cd1—N14 2.375 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H1c5⋯O4c i 0.96 2.49 3.449 (3) 172
N1—H2n1⋯O3c ii 0.80 (4) 2.46 (4) 3.149 (4) 145 (3)
N11—H1n11⋯O2c iii 0.82 (4) 2.40 (4) 3.140 (4) 149 (3)
N11—H2n11⋯O4a ii 0.92 (4) 2.44 (4) 3.210 (5) 141 (3)
N4—H1n4⋯O4a ii 0.98 (3) 2.36 (3) 3.271 (4) 154 (2)
N4—H1n4⋯O5a ii 0.98 (3) 2.38 (3) 3.236 (4) 145 (2)
N4—H1n4⋯O5b ii 0.98 (3) 2.22 (3) 3.113 (13) 151 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the University of Ilam, the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences (ASCR).

supplementary crystallographic information

Comment

Polyamines are an important class of N donor ligands, particularly for the transition metals (Patel et al., 2007, 2008; Blackman, 2005). Considerable attention has been focused on the polynuclear complexes containing bridging ligands because of their interesting molecular topologies, as well as the fact that they may be designed with specific functionalities (Gustafsson et al. 2010;. Ambrosi et al. 2009; You et al. 2011). The investigation of polynuclear complexes of cadmium(II) is an important objective in view of their electronic and optoelectronic properties (Evans et al. 2002; Chowdhury et al. 2007).

The molecular structure of the title complex is shown in Fig. 1. The cadmium(II) centers are six-coordinate by four nitrogen atoms of the non-bridging tetradentate (trien) ligand and two nitrogen atoms of the bridging trien ligand, with a substantial departure from an ideal octahedral geometry [cisoid angles: 73.97 (8)–114.67 (9)°; transoid angles: 141.95 (1)–159.20 (6)°] (Table 1). The distance between the two cadmium(II) centers of the dinuclear complex is 7.735 Å, which is longer than the corresponding distance in dinickel(II) complex (7.497 Å) of the same ligand (Cai et al. 2001b) due to larger radius of cadmium. Cadmium atoms in the dinuclear complex are related by a 2 fold symmetry operation. Bond distance of Cd—N(trien) are in the range of 2.62 (3)- 2.90 (3) Å (Table 1). The structure exhibits disorder of one of the perchlorate anions in two positions with refined occupancy 0.854 (7) and 0.146 (7) for the major and minor componet,respectively. The disorder was described using the rigid body approach. In the title complex the C—H···O and N—H···O hydrogen bonds have been found between the amine nitrogen/carbon donors and perchlorate acceptors (Fig.2),(Table 2).

Experimental

N,N'-bis(2-aminoethyl)ethane-1,2-diamine (0.45 g, 3 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and a mixture of Cd(NO3)2.4H2O (0.616 g, 2 mmol) and sodium perchlorate (0.488 g, 4 mmol) in the other. Methanol was then carefully added to fill both arms, the tube sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After one week, colorless crystals were collected in the cooler arm. Then they were filtered off, washed with acetone and diethylether, and air dried. Yield: (53%).

Refinement

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded to C were kept in ideal positions with C–H = 0.96 Å while positions of other H atoms were refined freely. In both cases Uiso(H) was set to 1.2Ueq(C,N). Disorder of perchlorate anion was refined using rigid body refinement, with occupancy ratio 0.85:0.15.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Unit-cell packing diagram of the title compound viewed along the crystallographic 〈〉a〈〉 axis. Hydrogen bonds are indicated by dashed lines; (orange = cadmium; green = chlorine; violet = nitrogen; grey = carbon; light-grey = hydrogen).

Crystal data

[Cd2(C6H18N4)3](ClO4)4 F(000) = 1076
Mr = 1061.3 Dx = 1.814 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2yn Cell parameters from 17686 reflections
a = 8.8056 (2) Å θ = 2.9–29.3°
b = 15.0259 (3) Å µ = 1.45 mm1
c = 14.7516 (3) Å T = 120 K
β = 95.4420 (17)° Prism, colourless
V = 1943.02 (7) Å3 0.70 × 0.51 × 0.33 mm
Z = 2

Data collection

Agilent Xcalibur Atlas Gemini ultra diffractometer 4952 independent reflections
Radiation source: Enhance (Mo) X-ray Source 4373 reflections with I > 3σ(I)
Graphite monochromator Rint = 0.022
Detector resolution: 10.3784 pixels mm-1 θmax = 29.4°, θmin = 2.9°
ω scans h = −11→12
Absorption correction: analytical (CrysAlis PRO; Agilent, 2012) k = −19→20
Tmin = 0.509, Tmax = 0.738 l = −20→19
31295 measured reflections

Refinement

Refinement on F2 82 constraints
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 2.02 (Δ/σ)max = 0.045
4952 reflections Δρmax = 1.13 e Å3
269 parameters Δρmin = −0.92 e Å3
0 restraints

Special details

Experimental. Absorption correction: analytical: CrysAlisPro, Agilent Technologies, Version 1.171.35.19 Analytical numeric absorption correction based on crystal shape

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cd1 0.286722 (18) 0.787742 (11) 0.064763 (11) 0.01848 (7)
N1 0.5386 (3) 0.73266 (16) 0.08829 (18) 0.0272 (7)
C2 0.5399 (3) 0.63634 (18) 0.0671 (2) 0.0292 (8)
C3 0.4054 (3) 0.59042 (17) 0.10338 (19) 0.0283 (8)
N4 0.2615 (2) 0.62928 (15) 0.06265 (14) 0.0228 (6)
C5 0.1244 (3) 0.60375 (18) 0.10733 (18) 0.0300 (8)
C6 −0.0058 (3) 0.6674 (2) 0.08095 (19) 0.0319 (9)
N7 0.0352 (3) 0.76022 (18) 0.10385 (16) 0.0277 (7)
C8 0.0284 (3) 0.78350 (18) 0.1997 (2) 0.0330 (9)
C9 0.1157 (3) 0.8669 (2) 0.22447 (19) 0.0354 (9)
N10 0.2773 (3) 0.85403 (16) 0.21066 (15) 0.0286 (7)
N11 0.2454 (3) 0.77849 (15) −0.09631 (18) 0.0296 (7)
C12 0.2788 (3) 0.86355 (17) −0.14108 (17) 0.0274 (8)
C13 0.2345 (3) 0.94099 (17) −0.08204 (17) 0.0231 (7)
N14 0.3148 (2) 0.93478 (13) 0.00986 (14) 0.0183 (6)
C15 0.4798 (3) 0.95387 (15) 0.01611 (16) 0.0200 (7)
H1c2 0.632977 0.610336 0.094187 0.035*
H2c2 0.535246 0.628241 0.002352 0.035*
H1c3 0.407828 0.528128 0.089118 0.034*
H2c3 0.411784 0.596978 0.168367 0.034*
H1c5 0.147832 0.604608 0.172219 0.036*
H2c5 0.094348 0.544411 0.089398 0.036*
H1c6 −0.035184 0.662706 0.016775 0.0383*
H2c6 −0.093123 0.650524 0.111322 0.0383*
H1c8 0.068971 0.735436 0.2374 0.0396*
H2c8 −0.076102 0.791229 0.211536 0.0396*
H1c9 0.106623 0.881033 0.287172 0.0424*
H2c9 0.074914 0.914972 0.18688 0.0424*
H1c12 0.221103 0.866719 −0.199579 0.0329*
H2c12 0.385736 0.866777 −0.14855 0.0329*
H1c13 0.260242 0.996164 −0.109623 0.0277*
H2c13 0.126385 0.940048 −0.07791 0.0277*
H1c15 0.530028 0.909867 −0.017582 0.024*
H2c15 0.523023 0.945412 0.077724 0.024*
H1n10 0.331 (4) 0.819 (2) 0.267 (2) 0.0344*
H2n10 0.340 (4) 0.909 (2) 0.227 (2) 0.0344*
H1n1 0.574 (4) 0.746 (2) 0.148 (2) 0.0326*
H1n7 −0.025 (5) 0.793 (2) 0.079 (3) 0.0332*
H1n14 0.278 (3) 0.964 (2) 0.037 (2) 0.0219*
H2n1 0.604 (4) 0.753 (3) 0.061 (2) 0.0326*
H1n11 0.153 (5) 0.768 (2) −0.104 (3) 0.0355*
H2n11 0.285 (4) 0.736 (3) −0.133 (3) 0.0355*
H1n4 0.241 (3) 0.610 (2) −0.001 (2) 0.0274*
Cl1c 0.20589 (7) 0.15386 (4) 0.11243 (4) 0.03020 (19)
O2c 0.0975 (3) 0.18921 (16) 0.16787 (16) 0.0431 (7)
O3c 0.3065 (3) 0.22454 (16) 0.0906 (2) 0.0500 (9)
O4c 0.2906 (3) 0.08460 (15) 0.16043 (15) 0.0451 (8)
O5c 0.1347 (3) 0.11760 (15) 0.03083 (15) 0.0456 (7)
Cl1a 0.8393 (2) 0.42448 (12) 0.19271 (14) 0.0246 (3) 0.854 (7)
O2a 0.8867 (6) 0.5086 (2) 0.2242 (3) 0.0768 (18) 0.854 (7)
O3a 0.8423 (5) 0.3641 (3) 0.2674 (3) 0.0378 (8) 0.854 (7)
O4a 0.6891 (4) 0.4247 (3) 0.1474 (3) 0.0468 (11) 0.854 (7)
O5a 0.9442 (5) 0.3933 (3) 0.1297 (3) 0.0388 (9) 0.854 (7)
Cl1b 0.8447 (14) 0.4319 (9) 0.2081 (8) 0.0246 (3) 0.146 (7)
O2b 0.9407 (15) 0.4949 (9) 0.2534 (9) 0.0768 (18) 0.146 (7)
O3b 0.8281 (14) 0.3574 (9) 0.2662 (9) 0.0378 (8) 0.146 (7)
O4b 0.6967 (14) 0.4661 (9) 0.1803 (9) 0.0468 (11) 0.146 (7)
O5b 0.9136 (14) 0.4022 (9) 0.1280 (9) 0.0388 (9) 0.146 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.01761 (13) 0.01696 (13) 0.02150 (13) −0.00220 (5) 0.00519 (8) 0.00130 (5)
N1 0.0215 (11) 0.0231 (11) 0.0368 (13) −0.0034 (9) 0.0021 (10) −0.0032 (10)
C2 0.0242 (13) 0.0229 (12) 0.0407 (15) 0.0027 (10) 0.0053 (11) −0.0014 (11)
C3 0.0302 (14) 0.0206 (12) 0.0338 (14) −0.0002 (10) 0.0015 (11) 0.0043 (10)
N4 0.0252 (10) 0.0207 (11) 0.0227 (11) −0.0071 (8) 0.0028 (8) 0.0030 (8)
C5 0.0324 (14) 0.0275 (13) 0.0306 (14) −0.0112 (11) 0.0050 (11) 0.0044 (11)
C6 0.0200 (13) 0.0419 (17) 0.0339 (14) −0.0112 (11) 0.0023 (10) 0.0042 (12)
N7 0.0187 (11) 0.0357 (13) 0.0289 (12) 0.0004 (9) 0.0041 (9) 0.0065 (10)
C8 0.0249 (14) 0.0429 (17) 0.0329 (15) 0.0045 (11) 0.0116 (12) 0.0036 (11)
C9 0.0357 (15) 0.0384 (16) 0.0336 (15) 0.0088 (12) 0.0118 (12) −0.0014 (12)
N10 0.0310 (12) 0.0322 (12) 0.0231 (11) 0.0017 (10) 0.0047 (9) −0.0011 (9)
N11 0.0434 (15) 0.0194 (11) 0.0265 (12) −0.0092 (10) 0.0066 (11) −0.0021 (9)
C12 0.0395 (15) 0.0222 (12) 0.0200 (11) −0.0088 (11) 0.0001 (10) 0.0006 (10)
C13 0.0214 (11) 0.0208 (12) 0.0263 (12) −0.0018 (9) −0.0014 (9) 0.0026 (9)
N14 0.0182 (10) 0.0148 (9) 0.0224 (10) −0.0017 (7) 0.0045 (8) −0.0016 (7)
C15 0.0189 (11) 0.0173 (11) 0.0234 (12) −0.0026 (9) −0.0001 (9) 0.0023 (9)
Cl1c 0.0298 (3) 0.0308 (3) 0.0297 (3) 0.0041 (2) 0.0011 (3) −0.0042 (2)
O2c 0.0390 (12) 0.0416 (11) 0.0498 (14) 0.0074 (10) 0.0101 (10) −0.0168 (11)
O3c 0.0589 (17) 0.0402 (13) 0.0531 (14) −0.0106 (10) 0.0159 (12) −0.0020 (11)
O4c 0.0614 (15) 0.0400 (13) 0.0329 (11) 0.0157 (10) 0.0003 (10) −0.0007 (9)
O5c 0.0517 (14) 0.0461 (13) 0.0361 (11) 0.0195 (10) −0.0106 (10) −0.0111 (10)
Cl1a 0.0346 (4) 0.0174 (5) 0.0224 (8) −0.0034 (3) 0.0062 (4) −0.0039 (4)
O2a 0.140 (4) 0.0407 (17) 0.060 (3) −0.055 (2) 0.064 (3) −0.0326 (18)
O3a 0.0459 (16) 0.0401 (14) 0.0267 (10) −0.0048 (11) 0.0004 (10) 0.0130 (10)
O4a 0.0390 (14) 0.066 (2) 0.0348 (16) 0.0216 (14) 0.0008 (11) 0.0038 (15)
O5a 0.0396 (18) 0.0376 (16) 0.0420 (13) −0.0078 (15) 0.0184 (13) −0.0130 (11)
Cl1b 0.0310 (4) 0.0229 (5) 0.0196 (8) −0.0082 (3) 0.0014 (4) −0.0039 (4)
O2b 0.104 (4) 0.098 (2) 0.031 (3) −0.084 (2) 0.023 (2) −0.0276 (19)
O3b 0.0424 (15) 0.0356 (14) 0.0350 (11) −0.0036 (11) 0.0020 (10) 0.0163 (10)
O4b 0.0542 (15) 0.049 (2) 0.0374 (17) 0.0258 (13) 0.0073 (12) 0.0057 (15)
O5b 0.0368 (18) 0.0497 (16) 0.0314 (14) −0.0109 (14) 0.0112 (13) −0.0133 (11)

Geometric parameters (Å, º)

Cd1—N1 2.362 (2) C9—H1c9 0.96
Cd1—N4 2.390 (3) C9—H2c9 0.96
Cd1—N7 2.377 (3) N11—C12 1.481 (4)
Cd1—N10 2.380 (3) N11—H1n11 0.82 (4)
Cd1—N11 2.374 (3) N11—H2n11 0.92 (4)
Cd1—N14 2.375 (2) C12—C13 1.526 (4)
N1—C2 1.481 (4) C12—H1c12 0.96
N1—H1n1 0.93 (3) C12—H2c12 0.96
N1—H2n1 0.80 (4) C13—N14 1.471 (3)
C2—C3 1.512 (4) C13—H1c13 0.96
C2—H1c2 0.96 C13—H2c13 0.96
C2—H2c2 0.96 N14—C15 1.475 (3)
C3—N4 1.471 (3) N14—H1n14 0.70 (3)
C3—H1c3 0.96 C15—C15i 1.519 (3)
C3—H2c3 0.96 C15—H1c15 0.96
N4—C5 1.480 (4) C15—H2c15 0.96
C5—C6 1.515 (4) Cl1c—O2c 1.418 (3)
C5—H1c5 0.96 Cl1c—O3c 1.439 (3)
C5—H2c5 0.96 Cl1c—O4c 1.428 (2)
C6—N7 1.472 (4) Cl1c—O5c 1.413 (2)
C6—H1c6 0.96 Cl1a—O2a 1.397 (4)
C6—H2c6 0.96 Cl1a—O3a 1.425 (5)
N7—C8 1.463 (4) Cl1a—O4a 1.424 (4)
N7—H1n7 0.78 (4) Cl1a—O5a 1.449 (5)
C8—C9 1.497 (4) Cl1b—O2b 1.397 (18)
C8—H1c8 0.96 Cl1b—O3b 1.425 (19)
C8—H2c8 0.96 Cl1b—O4b 1.424 (17)
C9—N10 1.469 (4) Cl1b—O5b 1.449 (19)
N11—Cd1—N14 73.97 (8) C8—C9—H2c9 109.47
N4—Cd1—N10 114.67 (9) N10—C9—H1c9 109.47
N1—Cd1—N7 141.90 (9) N10—C9—H2c9 109.47
N4—Cd1—N14 159.20 (6) H1c9—C9—H2c9 109.17
Cd1—N1—C2 109.72 (16) C12—N11—H1n11 110 (2)
Cd1—N1—H1n1 107 (2) C12—N11—H2n11 103 (2)
Cd1—N1—H2n1 120 (3) H1n11—N11—H2n11 102 (3)
C2—N1—H1n1 114 (2) N11—C12—C13 109.4 (2)
C2—N1—H2n1 105 (3) N11—C12—H1c12 109.47
H1n1—N1—H2n1 102 (3) N11—C12—H2c12 109.47
N1—C2—C3 110.5 (2) C13—C12—H1c12 109.47
N1—C2—H1c2 109.47 C13—C12—H2c12 109.47
N1—C2—H2c2 109.47 H1c12—C12—H2c12 109.59
C3—C2—H1c2 109.47 C12—C13—N14 110.6 (2)
C3—C2—H2c2 109.47 C12—C13—H1c13 109.47
H1c2—C2—H2c2 108.47 C12—C13—H2c13 109.47
C2—C3—N4 110.3 (2) N14—C13—H1c13 109.47
C2—C3—H1c3 109.47 N14—C13—H2c13 109.47
C2—C3—H2c3 109.47 H1c13—C13—H2c13 108.36
N4—C3—H1c3 109.47 C13—N14—C15 115.44 (19)
N4—C3—H2c3 109.47 C13—N14—H1n14 106 (3)
H1c3—C3—H2c3 108.58 C15—N14—H1n14 111 (2)
C3—N4—C5 115.0 (2) N14—C15—C15i 114.62 (18)
N4—C5—C6 110.6 (2) N14—C15—H1c15 109.47
N4—C5—H1c5 109.47 N14—C15—H2c15 109.47
N4—C5—H2c5 109.47 C15i—C15—H1c15 109.47
C6—C5—H1c5 109.47 C15i—C15—H2c15 109.47
C6—C5—H2c5 109.47 H1c15—C15—H2c15 103.78
H1c5—C5—H2c5 108.35 O2c—Cl1c—O3c 108.37 (16)
C5—C6—N7 112.1 (2) O2c—Cl1c—O4c 109.59 (14)
C5—C6—H1c6 109.47 O2c—Cl1c—O5c 111.57 (14)
C5—C6—H2c6 109.47 O3c—Cl1c—O4c 110.20 (15)
N7—C6—H1c6 109.47 O3c—Cl1c—O5c 109.05 (16)
N7—C6—H2c6 109.47 O4c—Cl1c—O5c 108.05 (13)
H1c6—C6—H2c6 106.74 O2a—Cl1a—O3a 109.7 (3)
C6—N7—C8 114.6 (2) O2a—Cl1a—O4a 112.9 (3)
C6—N7—H1n7 110 (2) O2a—Cl1a—O5a 108.5 (3)
C8—N7—H1n7 102 (3) O3a—Cl1a—O4a 108.2 (3)
N7—C8—C9 111.7 (2) O3a—Cl1a—O5a 108.9 (3)
N7—C8—H1c8 109.47 O4a—Cl1a—O5a 108.6 (3)
N7—C8—H2c8 109.47 O2b—Cl1b—O3b 109.7 (11)
C9—C8—H1c8 109.47 O2b—Cl1b—O4b 112.9 (11)
C9—C8—H2c8 109.47 O2b—Cl1b—O5b 108.5 (11)
H1c8—C8—H2c8 107.19 O3b—Cl1b—O4b 108.2 (11)
C8—C9—N10 109.8 (2) O3b—Cl1b—O5b 108.9 (11)
C8—C9—H1c9 109.47 O4b—Cl1b—O5b 108.6 (11)

Symmetry code: (i) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H1c5···O4cii 0.96 2.49 3.449 (3) 172
C8—H2c8···O3bii 0.96 2.48 3.412 (13) 163
N10—H1n10···O2cii 1.06 (3) 2.24 (4) 3.191 (3) 149 (3)
N10—H2n10···O2biii 1.01 (3) 2.32 (3) 3.268 (13) 156 (3)
N1—H1n1···O3aiii 0.93 (3) 2.25 (3) 3.018 (5) 139 (3)
N1—H1n1···O3biii 0.93 (3) 2.22 (4) 3.004 (13) 141 (3)
N7—H1n7···O5civ 0.78 (4) 2.25 (4) 2.999 (3) 159 (4)
N1—H2n1···O3cv 0.80 (4) 2.46 (4) 3.149 (4) 145 (3)
N11—H1n11···O2civ 0.82 (4) 2.40 (4) 3.140 (4) 149 (3)
N11—H2n11···O4av 0.92 (4) 2.44 (4) 3.210 (5) 141 (3)
N4—H1n4···O4av 0.98 (3) 2.36 (3) 3.271 (4) 154 (2)
N4—H1n4···O5av 0.98 (3) 2.38 (3) 3.236 (4) 145 (2)
N4—H1n4···O5bv 0.98 (3) 2.22 (3) 3.113 (13) 151 (3)

Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x, −y+1, −z; (v) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2040).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2009). Inorg. Chem. 48, 10424–01434. [DOI] [PubMed]
  3. Anderson, B. F., Bell, J. D., Buckingham, D. A., Cresswell, P. J., Gainsford, G. J., Marzilli, L. G., Robertson, G. B. & Sargeson, A. M. (1977). Inorg. Chem. 16, 3233–3244.
  4. Blackman, A. G. (2005). Polyhedron, 24, 1–39.
  5. Buckingham, D. A., Cresswell, P. J., Dellaca, R. J., Dwyer, M., Gainford, G. J., Marzilli, L. G., Maxwell, I. E., Robinson, W. T., Sargeson, A. M. & Turnbull, K. R. (1974). J. Am. Chem. Soc. 96, 1713–1725.
  6. Buckingham, D. A., Dwyer, M., Gainsford, G. J., Ho, V. J., Marzilli, L. G., Robinson, W. T., Sargeson, A. M. & Turnbull, K. B. (1975). Inorg. Chem. 14, 1739–1752.
  7. Buckingham, D. A. & Jones, D. (1965). Inorg. Chem. 4, 1387–1392.
  8. Cai, J., Hu, X., Feng, X., Ji, L. & Bernal, I. (2001a). Acta Cryst. B57, 45–53. [DOI] [PubMed]
  9. Cai, J., Hu, X., Yao, J. & Ji, L. (2001b). Inorg. Chem. Commun. 4, 478–482.
  10. Chowdhury, H., Ghosh, R., Rahaman, Sk. H. & Ghosh, B. K., (2007). Polyhedron, 26, 5023–5029.
  11. Das, S., Bhar, K., Fun, H. K., Chantrapromma, S. & Ghosh, B. K. (2010). Inorg. Chim. Acta, 363, 784–792.
  12. Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522. [DOI] [PubMed]
  13. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  14. Gustafsson, M., Fischer, A., Ilyukhin, A., Maliarik, M. & Nordblad, P. (2010). Inorg. Chem. 49, 5359–5361. [DOI] [PubMed]
  15. Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.
  16. He, X. (2009). Acta Cryst. E65, m205.
  17. Hu, X., Cai, J., Feng, X. & Ji, L. (2000). J. Chem. Crystallogr. 30, 27–34.
  18. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  19. Nie, F. M., Li, M., Li, G. X., Li, Z. & Li, W. (2010). Inorg. Chim. Acta, 363, 3351–3358.
  20. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  21. Patel, R. N., Kesharwani, M. K., Singh, A., Patel, D. K. & Choudhary, M. (2008). Transition Met. Chem. 33, 733–738.
  22. Patel, R. N., Singh, N., Patel, D. K. & Gundla, V. L. N. (2007). Indian J. Chem. Sect. A, 46, 422–427.
  23. Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Praha, Czech Republic.
  24. Shinohara, N., Matsufuji, S. & Okubo, W. (1991). Polyhedron, 10, 107–112.
  25. Shoukry, M. M., Shehata, M. R. & Mohamed, M. M. A. (1998). Mikrochim. Acta, 129, 107–113.
  26. Sun, S.-J., Deng, J.-H. & Liu, T.-L. (2010). Acta Cryst. E66, m981–m982. [DOI] [PMC free article] [PubMed]
  27. Wang, J., Xu, X.-J. & Tao, J.-Q. (2011). Acta Cryst. C67, m137–m139. [DOI] [PubMed]
  28. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  29. You, Z. L., Wang, X. L., Zhang, J. C., Wang, C. & Zhou, X. S. (2011). Struct. Chem. 22, 1297–1302.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033880/ru2040sup1.cif

e-68-m1153-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033880/ru2040Isup2.hkl

e-68-m1153-Isup2.hkl (218.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES