Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 8;68(Pt 9):m1160–m1161. doi: 10.1107/S1600536812034447

Bis(4-amino­pyridinium) tetra­iodido­cad­mate monohydrate

Qiaozhen Sun a,*, Songyi Liao a, Junjun Yao a, Junke Wang a, Qiongjiali Fang a
PMCID: PMC3435586  PMID: 22969459

Abstract

The title compound, (C5H7N2)2[CdI4]·H2O, contains one [CdI4]2− anion, two prontonated 4-amino­pyridine mol­ecules and one water mol­ecule in the asymmetric unit. In the anion, the CdII atom is coordinated by four I atoms in a slightly distorted tetra­hedral geometry. The [CdI4]2− anion and the water mol­ecule are bis­ected by a crystallographic mirror plane perpendicular to the c-axis direction, with the CdII atom, two of the I atoms and the atoms of the water mol­ecule located on this plane. The crystal packing is stabilized by inter­molecular N—H⋯I, N—H⋯O and O—H⋯I hydrogen bonds and by π–π stacking inter­actions [centroid–centroid distance = 3.798 (3) Å) between pyridine rings, which build up a three-dimensional network.

Related literature  

For background literature on the magnetism, anti­viral activity and luminescence of organic–inorganic hybrid compounds, see: Bauer et al. (2003); Cavicchioli et al. (2010); Li et al. (2007). For ion channel inhibitor properties of 4-amino­pyridine, see: Picolo et al. (2003). For metal complexes of 4-amino­pyridine, see: Das et al. (2010); Ivanova et al. (2005); Jebas et al. (2009); Kulicka et al. (2006); Rademeyer et al. (2007); Zaouali Zgolli et al. (2009). For bond-length data, see: Anderson et al. (2005); Hines et al. (2006).graphic file with name e-68-m1160-scheme1.jpg

Experimental  

Crystal data  

  • (C5H7N2)2[CdI4]·H2O

  • M r = 828.27

  • Orthorhombic, Inline graphic

  • a = 7.3987 (2) Å

  • b = 14.7348 (4) Å

  • c = 18.7286 (4) Å

  • V = 2041.76 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.12 mm−1

  • T = 293 K

  • 0.40 × 0.24 × 0.20 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.145, T max = 0.340

  • 11964 measured reflections

  • 1860 independent reflections

  • 1755 reflections with I > 2σ(I)

  • R int = 0.052

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.064

  • S = 1.02

  • 1860 reflections

  • 102 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536812034447/zl2495sup1.cif

e-68-m1160-sup1.cif (14.7KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯OW1i 0.86 2.03 2.886 (5) 173
N2—H2A⋯I2ii 0.86 3.12 3.938 (4) 161
N2—H2B⋯I2 0.86 3.04 3.843 (4) 157
OW1—HW1A⋯I2ii 0.83 (2) 3.24 (1) 3.828 (4) 130 (1)
OW1—HW1A⋯I2iii 0.83 (2) 3.24 (1) 3.828 (4) 130 (1)
OW1—HW1A⋯I1 0.83 (2) 3.27 (4) 3.704 (5) 116 (3)
OW1—HW1B⋯I3iv 0.85 (2) 2.99 (2) 3.761 (5) 152 (4)
OW1—HW1A⋯I1 0.83 (2) 3.27 (4) 3.704 (5) 116 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Postdoctoral Science Foundation of Central South University and the Fundamental Research Funds for the Central Universities.

supplementary crystallographic information

Comment

Studies of hydrogen bonds connecting organic-inorganic hybrid compounds continue to be a topic of intense research in crystal engineering because such compounds not only allow for rational bottom-up construction but hydrogen bonds also effectively regulate the molecular architecture. Hydrogen bond connected organic-inorganic hybrid compounds can exhibit novel properties related to e.g magnetism, luminescence, antiviral activity and even multifunctional properties (Bauer et al., 2003; Cavicchioli et al., 2010; Li et al., 2007). The protonated form of 4-aminopyridine (4-AP) has hydrogen-bonding capability at both ends of the molecule, and it is also biologically active and can be used as a K+ and Ca2+ channel inhibitor (Picolo et al., 2003). Structures of 4-AP with the metals MnII, CoII, CuII, NiII, SnIV, SbV and PdII have been reported (Das et al., 2010; Ivanova et al., 2005; Jebas et al., 2009; Kulicka et al., 2006; Rademeyer et al., 2007; Zaouali Zgolli et al., 2009). Here we report the crystal structure of the title compound, which is a salt that comprises two symmetry related 4-AP cations and a complex [CdI4]2- anion, Fig. 1. The [CdI4]2- anion and the water molecule are bisected by a crystallographic mirror plane perpendicular to the c-axis direction, with the the atoms Cd1, I1, I3 and the water molecule located on this plane at x, y, 1/4. In the anion, the CdII ion is coordinated by four I atoms, exhibiting a slightly distorted tetrahedral geometry. The mean Cd···I bond distance is 2.78 Å, which is similar to that of related compounds reported in the literature (Hines et al., 2006).

In the cation, the nitrogen atom of the pyridine ring is protonated. Both of the nitrogen atoms of 4-AP are not metal coordinated, but are instead involved in an extensive hydrogen bonding network that includes the amine hydrogen atoms and the iodine atoms, the protonated pyridyl hydrogen atom, and the water molecule. The bond distances and bond angles of the 4-AP cation are comparable with values reported earlier for its uncomplexed form (Anderson et al., 2005).

Packing of the title complex (Fig. 2 and Fig. 3) is facilitated through π–π interactions between pyridine rings [ring centroid distance: 3.798 (3) Å], through the N—H···I hydrogen bonds between the [CdI4]2- anions and the 4-AP cations, and through O—H···I and N—H···O hydrogen bonds, which link the components of the structure into a three dimensional network.

Experimental

A mixture of CdI2 (0.36 g, 0.98 mmol), pyridine-2,3-dicarboxylic acid (0.08 g, 0.48 mmol), and 4-aminopyridine (0.06 g, 0.64 mmol) in H2O (12.0 mL) was sealed in a 20 mL stainless-steal reactor with Teflon liner and heated at 423 K for 60 h under autogenous pressure. Colorless block crystals were collected after the reaction solution was cooled. Yield: 16%. IR: 3314(s), 1653(s), 1608(s), 1526(s), 1407(s), 1197(m), 993(m), 865(w), 806(m), 758(m), 715(w), 495(m).

Refinement

All of the non-hydrogen atoms were refined with anisotropic thermal displacement parameters. The O—H distances of water molecules were restrained to 0.84 Å with a standard deviation of 0.001 Å. The other H atoms were not located in the difference map and placed in calculated positions using the riding model approximation with C—H distances of 0.93 Å and an N—H distances of 0.86 Å. Uiso(H) were set to 1.2Ueq(C, N) or 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The title compound showing the atom-numbering scheme, with displacement ellipsoids shown at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x, y, -z+0.5; (ii) -x+1, -y+1, 0.5+z]

Fig. 2.

Fig. 2.

A packing diagram of the title compound, viewed in perspective along the a axis.

Fig. 3.

Fig. 3.

A view of the various N—H···I, N—H···O and O—H···I hydrogen bonds in the (1 1 2) plane, with hydrogen bonds shown as dashed lines. [Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) -x+2, -y+1, z-0.5; (iv) x-1, -y+0.5, z-0.5; (v) x-1, y, z.]

Crystal data

(C5H7N2)2[CdI4]·H2O F(000) = 1488
Mr = 828.27 Dx = 2.694 Mg m3
Orthorhombic, Pbcm Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2c2b Cell parameters from 7689 reflections
a = 7.3987 (2) Å θ = 2.6–28.2°
b = 14.7348 (4) Å µ = 7.12 mm1
c = 18.7286 (4) Å T = 293 K
V = 2041.76 (9) Å3 Block, colourless
Z = 4 0.40 × 0.24 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer 1860 independent reflections
Radiation source: fine-focus sealed tube 1755 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
φ and ω scans θmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.145, Tmax = 0.340 k = −17→14
11964 measured reflections l = −22→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0406P)2 + 1.5671P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
1860 reflections Δρmax = 0.91 e Å3
102 parameters Δρmin = −0.72 e Å3
3 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00433 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 1.01826 (6) 0.20199 (3) 0.2500 0.03793 (14)
I1 0.64576 (5) 0.22518 (3) 0.2500 0.03959 (14)
I2 1.14547 (4) 0.28284 (2) 0.125323 (15) 0.04579 (13)
I3 1.11401 (5) 0.01921 (3) 0.2500 0.04403 (15)
N1 0.6396 (7) 0.4593 (3) −0.11682 (19) 0.0606 (12)
H1B 0.6371 0.4870 −0.1572 0.073*
N2 0.6522 (6) 0.3361 (3) 0.0766 (2) 0.0617 (11)
H2A 0.5548 0.3145 0.0950 0.074*
H2B 0.7526 0.3324 0.0996 0.074*
C1 0.4861 (8) 0.4240 (3) −0.0903 (2) 0.0588 (13)
H1A 0.3794 0.4282 −0.1163 0.071*
C2 0.4861 (6) 0.3821 (3) −0.0254 (2) 0.0467 (10)
H2C 0.3797 0.3583 −0.0067 0.056*
C3 0.6476 (6) 0.3755 (3) 0.0125 (2) 0.0407 (9)
C4 0.8047 (7) 0.4105 (3) −0.0187 (3) 0.0547 (11)
H4A 0.9155 0.4048 0.0043 0.066*
C5 0.7938 (8) 0.4524 (3) −0.0821 (3) 0.0626 (13)
H5A 0.8977 0.4772 −0.1021 0.075*
OW1 0.4000 (7) 0.4442 (3) 0.2500 0.0552 (11)
HW1A 0.355 (5) 0.3924 (19) 0.2500 0.083*
HW1B 0.514 (3) 0.439 (3) 0.2500 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.0368 (3) 0.0395 (3) 0.0375 (2) 0.00051 (18) 0.000 0.000
I1 0.0341 (2) 0.0429 (2) 0.0418 (2) 0.00329 (15) 0.000 0.000
I2 0.0395 (2) 0.0539 (2) 0.04392 (19) 0.00186 (12) 0.00688 (10) 0.01025 (11)
I3 0.0430 (3) 0.0383 (2) 0.0508 (2) 0.00445 (16) 0.000 0.000
N1 0.101 (4) 0.046 (2) 0.0349 (18) −0.001 (2) 0.0029 (19) 0.0039 (16)
N2 0.059 (3) 0.072 (3) 0.054 (2) −0.008 (2) −0.0031 (17) 0.022 (2)
C1 0.077 (4) 0.049 (3) 0.051 (2) 0.002 (3) −0.018 (2) −0.009 (2)
C2 0.048 (3) 0.044 (2) 0.048 (2) −0.002 (2) −0.0030 (19) −0.0044 (18)
C3 0.047 (3) 0.033 (2) 0.042 (2) 0.0019 (17) 0.0029 (16) 0.0002 (16)
C4 0.048 (3) 0.056 (3) 0.061 (3) 0.002 (2) 0.008 (2) 0.006 (2)
C5 0.071 (4) 0.061 (3) 0.056 (3) 0.000 (3) 0.023 (3) 0.001 (2)
OW1 0.067 (3) 0.051 (3) 0.047 (2) 0.001 (2) 0.000 0.000

Geometric parameters (Å, º)

Cd1—I1 2.7771 (6) C1—C2 1.363 (6)
Cd1—I3 2.7849 (6) C1—H1A 0.9300
Cd1—I2i 2.7852 (4) C2—C3 1.394 (6)
Cd1—I2 2.7852 (4) C2—H2C 0.9300
N1—C5 1.317 (7) C3—C4 1.400 (6)
N1—C1 1.345 (7) C4—C5 1.341 (7)
N1—H1B 0.8600 C4—H4A 0.9300
N2—C3 1.333 (5) C5—H5A 0.9300
N2—H2A 0.8600 OW1—HW1A 0.83 (2)
N2—H2B 0.8600 OW1—HW1B 0.85 (2)
I1—Cd1—I3 111.805 (18) C2—C1—H1A 119.8
I1—Cd1—I2i 106.423 (13) C1—C2—C3 119.1 (5)
I3—Cd1—I2i 109.129 (13) C1—C2—H2C 120.5
I1—Cd1—I2 106.423 (13) C3—C2—H2C 120.5
I3—Cd1—I2 109.129 (13) N2—C3—C2 120.8 (4)
I2i—Cd1—I2 113.94 (2) N2—C3—C4 121.0 (4)
C5—N1—C1 121.2 (4) C2—C3—C4 118.3 (4)
C5—N1—H1B 119.4 C5—C4—C3 119.3 (5)
C1—N1—H1B 119.4 C5—C4—H4A 120.3
C3—N2—H2A 120.0 C3—C4—H4A 120.3
C3—N2—H2B 120.0 N1—C5—C4 121.7 (5)
H2A—N2—H2B 120.0 N1—C5—H5A 119.1
N1—C1—C2 120.3 (5) C4—C5—H5A 119.1
N1—C1—H1A 119.8 HW1A—OW1—HW1B 108 (3)

Symmetry code: (i) x, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1B···OW1ii 0.86 2.03 2.886 (5) 173
N2—H2A···I2iii 0.86 3.12 3.938 (4) 161
N2—H2B···I2 0.86 3.04 3.843 (4) 157
OW1—HW1A···I2iii 0.83 (2) 3.24 (1) 3.828 (4) 130 (1)
OW1—HW1A···I2iv 0.83 (2) 3.24 (1) 3.828 (4) 130 (1)
OW1—HW1A···I1 0.83 (2) 3.27 (4) 3.704 (5) 116 (3)
OW1—HW1B···I3v 0.85 (2) 2.99 (2) 3.761 (5) 152 (4)
OW1—HW1A···I1 0.83 (2) 3.27 (4) 3.704 (5) 116 (3)

Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x−1, y, z; (iv) x−1, y, −z+1/2; (v) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2495).

References

  1. Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.
  2. Bauer, E. M., Bellitto, C., Colapietro, M., Protalone, G. & Righini, G. (2003). Inorg. Chem. 42, 6345–6351. [DOI] [PubMed]
  3. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cavicchioli, M., Massabni, A. C., Hernrich, T. A., Costa-Neto, C., Abrão, E. P., Fonseca, B. A. L., Castellano, E. E., Corbi, P. P., Lustri, W. R. & Leite, C. Q. F. (2010). J. Inorg. Biochem. 104, 533–540. [DOI] [PubMed]
  5. Das, A., Dey, B., Jana, A. D., Hemming, J., Helliwell, M., Lee, H. M., Hsiao, T.-H., Suresh, E., Colacio, E., Choudhury, S. R. & Mukhopadhyay, S. (2010). Polyhedron, 29, 1317–1325.
  6. Hines, C. C., Reichert, W. M., Griffin, S. T., Bond, A. H., Snowwhite, P. E. & Rogers, R. D. (2006). J. Mol. Struct. 796, 76–85.
  7. Ivanova, B. B., Arnaudov, M. G. & Mayer-Figge, H. (2005). Polyhedron, 24, 1624–1630.
  8. Jebas, S. R., Sinthiya, A., Ravindran Durai Nayagam, B., Schollmeyer, D. & Raj, S. A. C. (2009). Acta Cryst. E65, m521. [DOI] [PMC free article] [PubMed]
  9. Kulicka, B., Jakubas, R., Pietraszko, A., Medycki, W. & Świergiel, J. (2006). J. Mol. Struct. 783, 88–95.
  10. Li, Z., Li, M., Zhou, X. P., Wu, T., Li, D. & Ng, S. W. (2007). Cryst. Growth Des. 7, 1992–1998.
  11. Picolo, G., Cassola, A. C. & Cury, Y. (2003). Eur. J. Pharmacol. 469, 57–64. [DOI] [PubMed]
  12. Rademeyer, M., Lemmerer, A. & Billing, D. G. (2007). Acta Cryst. C63, m289–m292. [DOI] [PubMed]
  13. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Zaouali Zgolli, D., Boughzala, H. & Driss, A. (2009). Acta Cryst. E65, m921. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536812034447/zl2495sup1.cif

e-68-m1160-sup1.cif (14.7KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES