Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 8;68(Pt 9):m1162–m1163. doi: 10.1107/S1600536812034587

Diaqua­bis­(2-iodo­benzoato-κO)bis­(nicotinamide-κN 1)copper(II)

Ömür Aydın a, Nagihan Çaylak Delibaş b, Hacali Necefoğlu a, Tuncer Hökelek c,*
PMCID: PMC3435587  PMID: 22969460

Abstract

In the title complex, [Cu(C7H4IO2)2(C6H6N2O)2(H2O)2], the CuII cation is located on an inversion center and is coordinated by two monodentate 2-iodo­benzoate (IB) anions, two nicotinamide (NA) ligands and two water mol­ecules in a distorted octa­hedral coordination geometry. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 32.12 (14)°, while the pyridine ring and the benzene ring are oriented at a dihedral angle of 82.02 (5)°. The coordinating water mol­ecule links with the carboxyl­ate group via an intra­molecular O—H⋯O hydrogen bond. In the crystal, N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular network.

Related literature  

For literature on niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972). For related structures, see: Aydın et al. (2012); Hökelek et al. (2009); Necefoğlu et al. (2011); Sertçelik et al. (2012a,b ); Sertçelik et al. (2009). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-m1162-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C7H4IO2)2(C6H6N2O)2(H2O)2]

  • M r = 837.85

  • Monoclinic, Inline graphic

  • a = 8.1617 (2) Å

  • b = 18.3365 (4) Å

  • c = 9.7047 (3) Å

  • β = 103.573 (3)°

  • V = 1411.81 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.02 mm−1

  • T = 100 K

  • 0.39 × 0.36 × 0.24 mm

Data collection  

  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.528, T max = 0.661

  • 13216 measured reflections

  • 3531 independent reflections

  • 3337 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.058

  • S = 1.13

  • 3531 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812034587/xu5599sup1.cif

e-68-m1162-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034587/xu5599Isup2.hkl

e-68-m1162-Isup2.hkl (169.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—O1 1.9937 (14)
Cu1—O4 2.5078 (16)
Cu1—N1 1.9984 (16)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O3i 0.84 (3) 2.17 (3) 2.942 (3) 154 (3)
N2—H22⋯O2ii 0.83 (3) 2.11 (3) 2.881 (2) 154 (3)
O4—H41⋯O2iii 0.87 (4) 1.87 (4) 2.720 (2) 165 (4)
O4—H42⋯O3iv 0.80 (4) 2.16 (4) 2.923 (2) 160 (4)
C10—H10⋯O2ii 0.93 2.49 3.368 (2) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

supplementary crystallographic information

Comment

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the title mononuclear complex, CuII cation is located on an inversion center and is coordinated by two 2-iodobenzoate (IB) anions, two nicotinamide (NA) ligands and two water molecules, all ligands coordinating in a monodentate manner (Fig. 1). The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2011), [Co(C7H4IO2)2(C6H6N2O)2(H2O)2] (Aydın et al., 2012), [Ni(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012a), [Mn(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009), [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009) and [Zn(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012b) have also been reported, where all the ligands coordinate to the metal atoms in a monodentate manner.

In the title complex, the four symmetry related O atoms (O1, O1', O4 and O4') in the equatorial plane around the CuII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two symmetry related N atoms of the NA ligands (N1 and N1') in the axial positions. The near equalities of the C1—O1 [1.275 (2) Å] and C1—O2 [1.245 (2) Å] bonds in the carboxylate group indicate delocalized bonding arrangement, rather than localized single and double bonds. The Cu—O bond lengths are 1.9937 (14) Å (for benzoate oxygens) and 2.5078 (16) Å (for water oxygens), and the Cu—N bond length is 1.9984 (16) Å, close to standard values (Allen et al., 1987). The Cu atom is displaced out of the mean-plane of the carboxylate group (O1/C1/O2) by -0.5995 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring A (C2—C7) is 32.12 (14)°. The benzene A (C2—C7) and the pyridine B (N1/C8—C12) rings are oriented at a dihedral angle of A/B = 82.02 (5)°. The coordinating water molecule links with the carboxylate group via an O—H···O hydrogen bond (Table 1).

In the crystal, intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional supramolecular network, in which they may be effective in the stabilization of the structure.

Experimental

The title compound was prepared by the reaction of CuSO4.5H2O (1.248 g, 5 mmol) in H2O (200 ml) and NA (1.220 g, 200 mmol) in H2O (20 ml) with 2-iodobenzoic acid (2.700 g, 10 mmol) in H2O (20 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.

Refinement

Atoms H21 and H22 (for NH2) and H41 and H42 (for H2O) were located in a difference Fourier map and were refined freely. The C-bound H-atoms were positioned geometrically with C—H = 0.93 Å for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (') -x, 1-y, -z].

Crystal data

[Cu(C7H4IO2)2(C6H6N2O)2(H2O)2] F(000) = 814
Mr = 837.85 Dx = 1.971 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7325 reflections
a = 8.1617 (2) Å θ = 2.8–28.3°
b = 18.3365 (4) Å µ = 3.02 mm1
c = 9.7047 (3) Å T = 100 K
β = 103.573 (3)° Block, blue
V = 1411.81 (7) Å3 0.39 × 0.36 × 0.24 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer 3531 independent reflections
Radiation source: fine-focus sealed tube 3337 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
φ and ω scans θmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→10
Tmin = 0.528, Tmax = 0.661 k = −24→24
13216 measured reflections l = −10→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058 H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0285P)2 + 1.437P] where P = (Fo2 + 2Fc2)/3
3531 reflections (Δ/σ)max = 0.001
203 parameters Δρmax = 0.97 e Å3
0 restraints Δρmin = −0.50 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.0000 0.5000 0.0000 0.01102 (8)
I1 0.120179 (18) 0.213804 (8) 0.323774 (16) 0.02225 (6)
O1 −0.10863 (18) 0.40869 (8) 0.04600 (14) 0.0137 (3)
O2 0.10292 (18) 0.37645 (8) 0.22737 (15) 0.0163 (3)
O3 0.4441 (2) 0.48850 (9) −0.32723 (15) 0.0195 (3)
O4 −0.2967 (2) 0.54420 (9) −0.08965 (16) 0.0174 (3)
H41 −0.252 (5) 0.571 (2) −0.145 (4) 0.045 (10)*
H42 −0.369 (5) 0.521 (2) −0.140 (4) 0.056 (12)*
N1 0.0134 (2) 0.45775 (9) −0.18686 (17) 0.0116 (3)
N2 0.3517 (2) 0.42184 (11) −0.52508 (19) 0.0191 (4)
H21 0.434 (4) 0.4370 (16) −0.555 (3) 0.024 (7)*
H22 0.276 (4) 0.3983 (16) −0.578 (3) 0.026 (8)*
C1 −0.0459 (2) 0.37253 (10) 0.1582 (2) 0.0116 (3)
C2 −0.1668 (2) 0.32473 (11) 0.2144 (2) 0.0117 (3)
C3 −0.1182 (2) 0.26188 (11) 0.2949 (2) 0.0120 (3)
C4 −0.2309 (3) 0.22441 (11) 0.3571 (2) 0.0162 (4)
H4 −0.1958 0.1831 0.4116 0.019*
C5 −0.3955 (3) 0.24892 (12) 0.3375 (2) 0.0180 (4)
H5 −0.4703 0.2247 0.3807 0.022*
C6 −0.4487 (3) 0.30965 (12) 0.2535 (2) 0.0177 (4)
H6 −0.5599 0.3254 0.2382 0.021*
C7 −0.3354 (3) 0.34687 (11) 0.1925 (2) 0.0147 (4)
H7 −0.3722 0.3873 0.1359 0.018*
C8 0.1566 (2) 0.46254 (10) −0.2307 (2) 0.0119 (4)
H8 0.2495 0.4847 −0.1717 0.014*
C9 0.1720 (2) 0.43569 (10) −0.36104 (19) 0.0113 (3)
C10 0.0335 (3) 0.40108 (11) −0.4471 (2) 0.0153 (4)
H10 0.0408 0.3815 −0.5338 0.018*
C11 −0.1159 (3) 0.39604 (12) −0.4024 (2) 0.0164 (4)
H11 −0.2101 0.3733 −0.4585 0.020*
C12 −0.1209 (3) 0.42577 (11) −0.2720 (2) 0.0142 (4)
H12 −0.2212 0.4235 −0.2424 0.017*
C13 0.3339 (3) 0.45019 (11) −0.4031 (2) 0.0140 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01365 (16) 0.01161 (15) 0.00929 (15) −0.00216 (12) 0.00570 (12) −0.00079 (11)
I1 0.01407 (8) 0.01936 (8) 0.03321 (10) 0.00596 (5) 0.00532 (6) 0.00443 (5)
O1 0.0148 (7) 0.0151 (7) 0.0114 (6) −0.0026 (5) 0.0036 (5) 0.0004 (5)
O2 0.0112 (7) 0.0219 (7) 0.0152 (7) −0.0038 (6) 0.0019 (5) 0.0012 (5)
O3 0.0158 (7) 0.0289 (8) 0.0142 (7) −0.0075 (6) 0.0046 (6) −0.0058 (6)
O4 0.0148 (7) 0.0222 (8) 0.0150 (7) −0.0012 (6) 0.0028 (6) 0.0021 (6)
N1 0.0112 (8) 0.0128 (7) 0.0115 (7) −0.0007 (6) 0.0044 (6) 0.0003 (6)
N2 0.0149 (9) 0.0301 (10) 0.0146 (8) −0.0072 (8) 0.0082 (7) −0.0074 (7)
C1 0.0119 (9) 0.0124 (8) 0.0112 (8) −0.0013 (7) 0.0042 (7) −0.0025 (6)
C2 0.0115 (9) 0.0128 (8) 0.0115 (8) −0.0014 (7) 0.0041 (7) −0.0010 (6)
C3 0.0088 (9) 0.0132 (8) 0.0139 (9) 0.0005 (7) 0.0020 (7) −0.0011 (7)
C4 0.0185 (10) 0.0138 (9) 0.0163 (9) −0.0032 (8) 0.0042 (8) 0.0020 (7)
C5 0.0153 (10) 0.0195 (10) 0.0211 (10) −0.0053 (8) 0.0083 (8) 0.0003 (8)
C6 0.0111 (9) 0.0190 (10) 0.0235 (10) 0.0000 (8) 0.0052 (8) −0.0006 (8)
C7 0.0142 (9) 0.0136 (9) 0.0160 (9) 0.0006 (7) 0.0030 (7) 0.0008 (7)
C8 0.0113 (9) 0.0135 (9) 0.0113 (8) −0.0013 (7) 0.0037 (7) −0.0001 (7)
C9 0.0103 (8) 0.0136 (8) 0.0109 (8) −0.0011 (7) 0.0044 (7) 0.0002 (6)
C10 0.0148 (10) 0.0195 (10) 0.0121 (9) −0.0026 (8) 0.0039 (7) −0.0033 (7)
C11 0.0138 (9) 0.0202 (10) 0.0150 (9) −0.0058 (8) 0.0028 (7) −0.0037 (7)
C12 0.0129 (9) 0.0150 (9) 0.0158 (9) −0.0026 (7) 0.0053 (7) −0.0008 (7)
C13 0.0111 (9) 0.0183 (9) 0.0128 (9) −0.0006 (7) 0.0033 (7) 0.0002 (7)

Geometric parameters (Å, º)

Cu1—O1 1.9937 (14) C3—C2 1.397 (3)
Cu1—O1i 1.9937 (14) C4—C3 1.394 (3)
Cu1—O4 2.5078 (16) C4—C5 1.387 (3)
Cu1—O4i 2.5078 (16) C4—H4 0.9300
Cu1—N1 1.9984 (16) C5—C6 1.388 (3)
Cu1—N1i 1.9984 (16) C5—H5 0.9300
I1—C3 2.0942 (19) C6—H6 0.9300
O1—C1 1.275 (2) C7—C6 1.389 (3)
O2—C1 1.245 (2) C7—H7 0.9300
O3—C13 1.238 (3) C8—H8 0.9300
O4—H41 0.87 (4) C9—C8 1.390 (2)
O4—H42 0.80 (4) C9—C10 1.391 (3)
N1—C8 1.337 (2) C9—C13 1.496 (3)
N1—C12 1.343 (3) C10—C11 1.390 (3)
N2—C13 1.331 (3) C10—H10 0.9300
N2—H22 0.83 (3) C11—H11 0.9300
N2—H21 0.84 (3) C12—C11 1.387 (3)
C1—C2 1.513 (3) C12—H12 0.9300
C2—C7 1.403 (3)
O1i—Cu1—O1 180.00 (7) C4—C5—C6 119.99 (19)
O1—Cu1—N1 89.98 (6) C4—C5—H5 120.0
O1i—Cu1—N1 90.02 (6) C6—C5—H5 120.0
O1—Cu1—N1i 90.02 (6) C5—C6—C7 119.8 (2)
O1i—Cu1—N1i 89.98 (6) C5—C6—H6 120.1
O4—Cu1—O1 84.56 (6) C7—C6—H6 120.1
O4—Cu1—N1 93.70 (6) C2—C7—H7 119.3
N1—Cu1—N1i 180.00 (9) C6—C7—C2 121.42 (19)
H41—O4—H42 106 (4) C6—C7—H7 119.3
C1—O1—Cu1 121.16 (13) N1—C8—C9 122.62 (18)
C8—N1—Cu1 120.11 (13) N1—C8—H8 118.7
C12—N1—Cu1 121.13 (13) C9—C8—H8 118.7
C8—N1—C12 118.74 (16) C8—C9—C10 118.26 (18)
C13—N2—H21 116 (2) C8—C9—C13 117.39 (17)
C13—N2—H22 122 (2) C10—C9—C13 124.23 (17)
H22—N2—H21 120 (3) C9—C10—H10 120.3
O1—C1—C2 116.35 (17) C11—C10—C9 119.46 (18)
O2—C1—O1 125.16 (18) C11—C10—H10 120.3
O2—C1—C2 118.39 (17) C10—C11—H11 120.8
C3—C2—C1 123.79 (18) C12—C11—C10 118.33 (19)
C3—C2—C7 117.57 (18) C12—C11—H11 120.8
C7—C2—C1 118.51 (17) N1—C12—C11 122.56 (19)
C2—C3—I1 123.71 (14) N1—C12—H12 118.7
C4—C3—I1 114.92 (15) C11—C12—H12 118.7
C4—C3—C2 121.30 (18) O3—C13—N2 122.34 (19)
C3—C4—H4 120.1 O3—C13—C9 120.19 (17)
C5—C4—C3 119.83 (19) N2—C13—C9 117.45 (18)
C5—C4—H4 120.1
N1—Cu1—O1—C1 123.90 (15) I1—C3—C2—C7 173.86 (14)
N1i—Cu1—O1—C1 −56.10 (15) C4—C3—C2—C1 172.78 (18)
O1—Cu1—N1—C8 −133.41 (15) C4—C3—C2—C7 −3.0 (3)
O1i—Cu1—N1—C8 46.59 (15) C5—C4—C3—I1 −176.15 (16)
O1—Cu1—N1—C12 48.21 (16) C5—C4—C3—C2 1.0 (3)
O1i—Cu1—N1—C12 −131.79 (16) C3—C4—C5—C6 1.5 (3)
Cu1—O1—C1—O2 −20.6 (3) C4—C5—C6—C7 −1.8 (3)
Cu1—O1—C1—C2 155.73 (13) C2—C7—C6—C5 −0.4 (3)
Cu1—N1—C8—C9 −178.46 (15) C10—C9—C8—N1 −1.5 (3)
C12—N1—C8—C9 0.0 (3) C13—C9—C8—N1 174.79 (18)
Cu1—N1—C12—C11 179.89 (16) C8—C9—C10—C11 1.6 (3)
C8—N1—C12—C11 1.5 (3) C13—C9—C10—C11 −174.41 (19)
O1—C1—C2—C3 153.14 (18) C8—C9—C13—O3 −4.3 (3)
O1—C1—C2—C7 −31.1 (3) C8—C9—C13—N2 177.18 (19)
O2—C1—C2—C3 −30.3 (3) C10—C9—C13—O3 171.8 (2)
O2—C1—C2—C7 145.49 (19) C10—C9—C13—N2 −6.8 (3)
C1—C2—C7—C6 −173.32 (18) C9—C10—C11—C12 −0.3 (3)
C3—C2—C7—C6 2.7 (3) N1—C12—C11—C10 −1.3 (3)
I1—C3—C2—C1 −10.3 (3)

Symmetry code: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H21···O3ii 0.84 (3) 2.17 (3) 2.942 (3) 154 (3)
N2—H22···O2iii 0.83 (3) 2.11 (3) 2.881 (2) 154 (3)
O4—H41···O2i 0.87 (4) 1.87 (4) 2.720 (2) 165 (4)
O4—H42···O3iv 0.80 (4) 2.16 (4) 2.923 (2) 160 (4)
C10—H10···O2iii 0.93 2.49 3.368 (2) 158

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z−1; (iii) x, y, z−1; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5599).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Aydın, Ö., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m521–m522. [DOI] [PMC free article] [PubMed]
  3. Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  4. Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  5. Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m607–m608. [DOI] [PMC free article] [PubMed]
  9. Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. [DOI] [PubMed]
  10. Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m900–m901. [DOI] [PMC free article] [PubMed]
  11. Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012a). Acta Cryst. E68, m946–m947. [DOI] [PMC free article] [PubMed]
  12. Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012b). Acta Cryst. E68, m1127–m1128. [DOI] [PMC free article] [PubMed]
  13. Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m324–m325. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812034587/xu5599sup1.cif

e-68-m1162-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034587/xu5599Isup2.hkl

e-68-m1162-Isup2.hkl (169.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES