Abstract
The green title complex, [Co2(CH3)2(C12H21N2Si)2], was obtained from bis{[μ-N-tert-butyldimethylsilyl-N-(pyridin-2-ylmethyl)amido]chloridocobalt(II)} and methyllithium in diethyl ether at 195 K via a metathesis reaction. The dimeric cobalt(II) complex exhibits a crystallographic center of inversion in the middle of the Co2N2 ring (average Co—N = 2.050 Å). The CoII atom shows a distorted tetrahedral coordination sphere. The exocyclic Co—N bond length to the pyridyl group shows a similar value of 2.045 (4) Å. The exocyclic methyl group has a rather long Co—C bond length of 2.019 (5) Å.
Related literature
The metathetical conversion of a cobalt chloride functionality into a methyl cobalt fragment via the reaction with methyllithium was reported earlier for tetra-coordinate cobalt(II) complexes bound to three additional aza-bases, see: Au-Yeung et al. (2007 ▶); Bowman et al. (2010 ▶); Humphries et al. (2005 ▶); Kleigrewe et al. (2005 ▶), Wallenhorst et al. (2008 ▶). The synthesis of dialkyl cobalt complexes succeeds starting from hexa-coordinate [(L)4CoCl2] with L being a pyridyl base, see: Milani et al. (2003 ▶); Zhu et al. (2010 ▶). The coordination number of the final cobalt(II) complexes depends on intramolecular steric strain yielding hexa-coordinate [(bpy)2CoMe2] (bpy = 2,2′-bipyridine) and tetra-coordinate [(py)2CoR
2] (R = CH2C(Me2)Ph). The formation of para-tolylcobalt complexes was reported by Zhu & Budzelaar (2010 ▶) who proposed a radical mechanism.
Experimental
Crystal data
[Co2(CH3)2(C12H21N2Si)2]
M r = 590.72
Triclinic,
a = 8.4751 (8) Å
b = 9.8055 (12) Å
c = 10.6130 (6) Å
α = 72.837 (6)°
β = 83.450 (6)°
γ = 69.216 (6)°
V = 787.81 (13) Å3
Z = 1
Mo Kα radiation
μ = 1.15 mm−1
T = 183 K
0.06 × 0.06 × 0.04 mm
Data collection
Nonius KappaCCD diffractometer
5417 measured reflections
3551 independent reflections
1685 reflections with I > 2σ(I)
R int = 0.074
Refinement
R[F 2 > 2σ(F 2)] = 0.061
wR(F 2) = 0.129
S = 0.92
3551 reflections
160 parameters
H-atom parameters constrained
Δρmax = 0.39 e Å−3
Δρmin = −0.39 e Å−3
Data collection: COLLECT (Nonius, 1998 ▶); cell refinement: DENZO (Otwinowski & Minor, 1997 ▶); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL/PC (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812032321/im2393sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032321/im2393Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
We thank the Deutsche Forschungsgemeinschaft (DFG, Bonn–Bad Godesberg, Germany) for generous financial support. We also acknowledge funding from the Fonds der Chemischen Industrie (Frankfurt/Main, Germany).
supplementary crystallographic information
Comment
Au-Yeung et al. (2007) performed a metathetical ligand substitution reaction at (tmeda)cobalt(II) 2,6-dimethylphenyl-N-trimethylsilylamide chloride (tmeda = tetramethylethylenediamine) with methyllithium in toluene. Whereas in this complex the cobalt(II) adopts a distorted tetrahedral coordination sphere, severe distortions were observed using tridentate aza-Lewis bases (Bowman et al., 2010; Humphries et al., 2005; Kleigrewe et al., 2005; Wallenhorst et al., 2008). Treatment of tetrakis(pyridine)cobalt(II) dichloride with trimethylsilylmethyllithium or 2-methyl-2-phenylpropyllithium in n-pentane yielded [(py)2CoR2] (R = CH2SiMe3)2, CH2C(Me2)Ph), respectively, with tetra-coordinate cobalt centers (Zhu et al., 2010). Less bulky methyl groups allowed the formation of [(bpy)2CoMe2] with a hexa-coordinate cobalt atom in a slightly distorted octahedral environment (Milani et al., 2003). Contrary to these procedures, a radical mechanism was discussed by Zhu & Budzelaar (2010) for the formation of para-tolyl-cobalt complexes. Whereas all of these cobalt(II) complexes represent mononuclear derivatives, the reaction of bis[N-(pyidin-2-ylmethyl)-N-(tert-butyldimethylsilyl)amido cobalt(II) chloride] with methyllithium in tetrahydrofuran (THF) yielded the centrosymmetric dinuclear title compound 1 with a central planar Co2N2 ring.
Experimental
Bis{chlorido-[N-(pyidin-2-ylmethyl)-N-(tert-butyldimethylsilyl)amido]cobalt(II)} (0.84 g, 1.32 mmol) was dissolved in 15 ml of THF and this solution cooled to -78 °C. Then 1.7 ml (2,72 mmol) of a 1,6M methyllithium solution in diethyl ether was added dropwise. A brown reaction solution formed which was warmed to ambient temperature and stirred for an additional hour. Thereafter all volatile materials were removed and the residue dried in vacuo. This residue was extracted with 15 ml of n-hexane. The volume of this solution was reduced to third of the original volume and cooled to -20 °C. Within several hours green rod-like crystals of 1 precipitated. Yield: 0.21 g (0.36 mmol, 27%).
Refinement
All hydrogen atoms were calculated to idealized positions with C–H distances of 0.98 (methyl), 0.99 (methylene) and 0.95 (phenyl) Å, and were refined with 1.2 times (1.5 for all methyl groups) the isotropic displacement parameter of the corresponding carbon atom. All methyl groups were allowed to rotate but not to tip.
Figures
Fig. 1.
Molecular structure and numbering scheme of the title compound 1; Displacement ellipsoids are at the 40% probability level. H atoms are neglected for clarity reasons. Symmetry-related atoms are marked with the letter i [symmetry code: (i) -x + 1, -y + 1, -z + 1].
Fig. 2.
Packing of the molecules by short ring-interactions (distance between the centroids of the aromatic rings 3.689 (3) Å).
Crystal data
| [Co2(CH3)2(C12H21N2Si)2] | Z = 1 |
| Mr = 590.72 | F(000) = 314 |
| Triclinic, P1 | Dx = 1.245 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 8.4751 (8) Å | Cell parameters from 5417 reflections |
| b = 9.8055 (12) Å | θ = 3.3–27.5° |
| c = 10.6130 (6) Å | µ = 1.15 mm−1 |
| α = 72.837 (6)° | T = 183 K |
| β = 83.450 (6)° | Prism, green |
| γ = 69.216 (6)° | 0.06 × 0.06 × 0.04 mm |
| V = 787.81 (13) Å3 |
Data collection
| Nonius KappaCCD diffractometer | 1685 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.074 |
| Graphite monochromator | θmax = 27.5°, θmin = 3.3° |
| phi– + ω–scan | h = −10→9 |
| 5417 measured reflections | k = −10→12 |
| 3551 independent reflections | l = −13→13 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.129 | H-atom parameters constrained |
| S = 0.92 | w = 1/[σ2(Fo2) + (0.0369P)2] where P = (Fo2 + 2Fc2)/3 |
| 3551 reflections | (Δ/σ)max < 0.001 |
| 160 parameters | Δρmax = 0.39 e Å−3 |
| 0 restraints | Δρmin = −0.39 e Å−3 |
Special details
| Experimental. IR (in Nujol between KBr windows, cm-1): = 1715 w, 1583 m, 1273 m, 1244 s, 1146 m, 1080 m, 1036 m, 1008 m, 889 m, 828 s, 770 m, 736 m. MS (DEI, rel. intensity in brackets): m/z = 501 ([M - CoMe2]+, 11%), 165 ([Pyr-CH2-NHSiMe2]+, 100%). Elemental analysis (C26H48Co2N4Si2, 590,72): calcd.: C 52.86, H 8.19, N 9.48; found: C 49.47, H 7.70, N 9.03 (the rather large deviations are caused by extreme sensitivity of the complex towards moisture and air; the low carbon value is a consequence of carbide and carbonate formation despite the fact that V2O5 was added prior to combustion). |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Co1 | 0.50875 (8) | 0.62393 (8) | 0.52394 (5) | 0.0360 (2) | |
| Si1 | 0.36965 (16) | 0.43232 (17) | 0.77488 (11) | 0.0373 (4) | |
| N1 | 0.2891 (5) | 0.7874 (4) | 0.4452 (3) | 0.0342 (10) | |
| N2 | 0.3562 (4) | 0.4948 (4) | 0.6037 (3) | 0.0306 (9) | |
| C1 | 0.2668 (7) | 0.9328 (6) | 0.3756 (4) | 0.0466 (14) | |
| H1A | 0.3599 | 0.9681 | 0.3636 | 0.056* | |
| C2 | 0.1139 (7) | 1.0311 (6) | 0.3217 (4) | 0.0524 (15) | |
| H2A | 0.1017 | 1.1325 | 0.2732 | 0.063* | |
| C3 | −0.0218 (7) | 0.9803 (7) | 0.3391 (5) | 0.0570 (16) | |
| H3A | −0.1275 | 1.0452 | 0.3003 | 0.068* | |
| C4 | −0.0012 (6) | 0.8329 (6) | 0.4142 (4) | 0.0429 (13) | |
| H4A | −0.0938 | 0.7967 | 0.4294 | 0.052* | |
| C5 | 0.1560 (6) | 0.7389 (6) | 0.4668 (4) | 0.0349 (12) | |
| C6 | 0.1808 (5) | 0.5827 (6) | 0.5525 (4) | 0.0387 (12) | |
| H6A | 0.1501 | 0.5256 | 0.5020 | 0.046* | |
| H6B | 0.1020 | 0.5892 | 0.6286 | 0.046* | |
| C7 | 0.2682 (6) | 0.5989 (6) | 0.8446 (4) | 0.0529 (15) | |
| H7A | 0.3243 | 0.6742 | 0.8080 | 0.079* | |
| H7B | 0.2788 | 0.5648 | 0.9408 | 0.079* | |
| H7C | 0.1485 | 0.6445 | 0.8213 | 0.079* | |
| C8 | 0.5975 (6) | 0.3468 (6) | 0.8222 (4) | 0.0504 (15) | |
| H8A | 0.6571 | 0.4165 | 0.7746 | 0.076* | |
| H8B | 0.6479 | 0.2504 | 0.7993 | 0.076* | |
| H8C | 0.6067 | 0.3288 | 0.9174 | 0.076* | |
| C9 | 0.2621 (6) | 0.2877 (6) | 0.8564 (4) | 0.0430 (13) | |
| C10 | 0.0704 (6) | 0.3488 (6) | 0.8314 (5) | 0.0594 (16) | |
| H10A | 0.0208 | 0.2719 | 0.8808 | 0.089* | |
| H10B | 0.0505 | 0.3722 | 0.7370 | 0.089* | |
| H10C | 0.0180 | 0.4411 | 0.8606 | 0.089* | |
| C11 | 0.3389 (6) | 0.1452 (6) | 0.8085 (4) | 0.0502 (14) | |
| H11A | 0.2790 | 0.0739 | 0.8499 | 0.075* | |
| H11B | 0.4584 | 0.0976 | 0.8324 | 0.075* | |
| H11C | 0.3288 | 0.1728 | 0.7125 | 0.075* | |
| C12 | 0.2873 (7) | 0.2393 (7) | 1.0077 (4) | 0.0700 (19) | |
| H12A | 0.2415 | 0.1575 | 1.0491 | 0.105* | |
| H12B | 0.2284 | 0.3263 | 1.0430 | 0.105* | |
| H12C | 0.4080 | 0.2034 | 1.0267 | 0.105* | |
| C13 | 0.6200 (6) | 0.7259 (7) | 0.6082 (4) | 0.0580 (16) | |
| H13A | 0.6269 | 0.8189 | 0.5442 | 0.087* | |
| H13B | 0.7339 | 0.6571 | 0.6363 | 0.087* | |
| H13C | 0.5532 | 0.7510 | 0.6850 | 0.087* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Co1 | 0.0333 (4) | 0.0450 (5) | 0.0363 (4) | −0.0195 (3) | 0.0038 (3) | −0.0147 (3) |
| Si1 | 0.0355 (8) | 0.0459 (10) | 0.0285 (7) | −0.0122 (8) | 0.0012 (5) | −0.0098 (6) |
| N1 | 0.039 (2) | 0.033 (3) | 0.033 (2) | −0.015 (2) | 0.0103 (16) | −0.0130 (19) |
| N2 | 0.026 (2) | 0.036 (3) | 0.0285 (17) | −0.009 (2) | −0.0019 (15) | −0.0068 (16) |
| C1 | 0.051 (4) | 0.038 (4) | 0.050 (3) | −0.017 (3) | 0.020 (3) | −0.015 (3) |
| C2 | 0.059 (4) | 0.037 (4) | 0.048 (3) | −0.010 (3) | 0.011 (3) | −0.004 (3) |
| C3 | 0.051 (4) | 0.050 (4) | 0.054 (3) | 0.000 (3) | −0.005 (3) | −0.010 (3) |
| C4 | 0.032 (3) | 0.045 (4) | 0.046 (3) | −0.009 (3) | 0.001 (2) | −0.010 (3) |
| C5 | 0.037 (3) | 0.041 (3) | 0.024 (2) | −0.012 (3) | 0.0019 (19) | −0.008 (2) |
| C6 | 0.038 (3) | 0.044 (4) | 0.037 (2) | −0.022 (3) | 0.003 (2) | −0.007 (2) |
| C7 | 0.061 (4) | 0.057 (4) | 0.045 (3) | −0.018 (3) | 0.003 (2) | −0.024 (3) |
| C8 | 0.045 (3) | 0.070 (4) | 0.038 (3) | −0.014 (3) | −0.007 (2) | −0.020 (3) |
| C9 | 0.044 (3) | 0.042 (4) | 0.029 (2) | −0.005 (3) | 0.005 (2) | −0.003 (2) |
| C10 | 0.050 (4) | 0.054 (4) | 0.068 (3) | −0.022 (3) | 0.016 (3) | −0.009 (3) |
| C11 | 0.048 (3) | 0.042 (4) | 0.056 (3) | −0.018 (3) | 0.010 (2) | −0.007 (3) |
| C12 | 0.084 (4) | 0.064 (5) | 0.040 (3) | −0.019 (4) | 0.001 (3) | 0.009 (3) |
| C13 | 0.055 (4) | 0.089 (5) | 0.055 (3) | −0.047 (4) | 0.013 (3) | −0.034 (3) |
Geometric parameters (Å, º)
| Co1—C13 | 2.019 (5) | C6—H6B | 0.9900 |
| Co1—N2i | 2.032 (3) | C7—H7A | 0.9800 |
| Co1—N1 | 2.045 (4) | C7—H7B | 0.9800 |
| Co1—N2 | 2.067 (4) | C7—H7C | 0.9800 |
| Co1—Co1i | 2.6812 (14) | C8—H8A | 0.9800 |
| Si1—N2 | 1.741 (3) | C8—H8B | 0.9800 |
| Si1—C8 | 1.873 (4) | C8—H8C | 0.9800 |
| Si1—C7 | 1.877 (5) | C9—C11 | 1.528 (7) |
| Si1—C9 | 1.898 (5) | C9—C10 | 1.544 (6) |
| N1—C5 | 1.345 (5) | C9—C12 | 1.551 (6) |
| N1—C1 | 1.354 (6) | C10—H10A | 0.9800 |
| N2—C6 | 1.499 (5) | C10—H10B | 0.9800 |
| N2—Co1i | 2.032 (3) | C10—H10C | 0.9800 |
| C1—C2 | 1.376 (6) | C11—H11A | 0.9800 |
| C1—H1A | 0.9500 | C11—H11B | 0.9800 |
| C2—C3 | 1.381 (7) | C11—H11C | 0.9800 |
| C2—H2A | 0.9500 | C12—H12A | 0.9800 |
| C3—C4 | 1.388 (7) | C12—H12B | 0.9800 |
| C3—H3A | 0.9500 | C12—H12C | 0.9800 |
| C4—C5 | 1.390 (6) | C13—H13A | 0.9800 |
| C4—H4A | 0.9500 | C13—H13B | 0.9800 |
| C5—C6 | 1.487 (6) | C13—H13C | 0.9800 |
| C6—H6A | 0.9900 | ||
| C13—Co1—N2i | 119.40 (17) | N2—C6—H6B | 108.5 |
| C13—Co1—N1 | 105.8 (2) | H6A—C6—H6B | 107.5 |
| N2i—Co1—N1 | 112.97 (13) | Si1—C7—H7A | 109.5 |
| C13—Co1—N2 | 130.97 (16) | Si1—C7—H7B | 109.5 |
| N2i—Co1—N2 | 98.30 (12) | H7A—C7—H7B | 109.5 |
| N1—Co1—N2 | 84.19 (15) | Si1—C7—H7C | 109.5 |
| C13—Co1—Co1i | 151.34 (17) | H7A—C7—H7C | 109.5 |
| N2i—Co1—Co1i | 49.71 (10) | H7B—C7—H7C | 109.5 |
| N1—Co1—Co1i | 102.57 (11) | Si1—C8—H8A | 109.5 |
| N2—Co1—Co1i | 48.59 (10) | Si1—C8—H8B | 109.5 |
| N2—Si1—C8 | 108.95 (18) | H8A—C8—H8B | 109.5 |
| N2—Si1—C7 | 109.2 (2) | Si1—C8—H8C | 109.5 |
| C8—Si1—C7 | 108.4 (2) | H8A—C8—H8C | 109.5 |
| N2—Si1—C9 | 114.74 (19) | H8B—C8—H8C | 109.5 |
| C8—Si1—C9 | 108.4 (2) | C11—C9—C10 | 107.8 (4) |
| C7—Si1—C9 | 107.0 (2) | C11—C9—C12 | 107.5 (4) |
| C5—N1—C1 | 119.0 (4) | C10—C9—C12 | 107.5 (4) |
| C5—N1—Co1 | 113.7 (3) | C11—C9—Si1 | 111.1 (3) |
| C1—N1—Co1 | 127.3 (3) | C10—C9—Si1 | 113.3 (3) |
| C6—N2—Si1 | 114.5 (2) | C12—C9—Si1 | 109.4 (3) |
| C6—N2—Co1i | 109.3 (2) | C9—C10—H10A | 109.5 |
| Si1—N2—Co1i | 125.9 (2) | C9—C10—H10B | 109.5 |
| C6—N2—Co1 | 108.8 (3) | H10A—C10—H10B | 109.5 |
| Si1—N2—Co1 | 111.27 (17) | C9—C10—H10C | 109.5 |
| Co1i—N2—Co1 | 81.70 (12) | H10A—C10—H10C | 109.5 |
| N1—C1—C2 | 122.1 (5) | H10B—C10—H10C | 109.5 |
| N1—C1—H1A | 118.9 | C9—C11—H11A | 109.5 |
| C2—C1—H1A | 118.9 | C9—C11—H11B | 109.5 |
| C1—C2—C3 | 119.1 (5) | H11A—C11—H11B | 109.5 |
| C1—C2—H2A | 120.4 | C9—C11—H11C | 109.5 |
| C3—C2—H2A | 120.4 | H11A—C11—H11C | 109.5 |
| C2—C3—C4 | 119.0 (5) | H11B—C11—H11C | 109.5 |
| C2—C3—H3A | 120.5 | C9—C12—H12A | 109.5 |
| C4—C3—H3A | 120.5 | C9—C12—H12B | 109.5 |
| C3—C4—C5 | 119.4 (5) | H12A—C12—H12B | 109.5 |
| C3—C4—H4A | 120.3 | C9—C12—H12C | 109.5 |
| C5—C4—H4A | 120.3 | H12A—C12—H12C | 109.5 |
| N1—C5—C4 | 121.3 (4) | H12B—C12—H12C | 109.5 |
| N1—C5—C6 | 117.8 (4) | Co1—C13—H13A | 109.5 |
| C4—C5—C6 | 120.8 (4) | Co1—C13—H13B | 109.5 |
| C5—C6—N2 | 115.1 (4) | H13A—C13—H13B | 109.5 |
| C5—C6—H6A | 108.5 | Co1—C13—H13C | 109.5 |
| N2—C6—H6A | 108.5 | H13A—C13—H13C | 109.5 |
| C5—C6—H6B | 108.5 | H13B—C13—H13C | 109.5 |
Symmetry code: (i) −x+1, −y+1, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2393).
References
- Au-Yeung, H. Y., Lam, C. H., Lam, C., Wong, W. & Lee, H. K. (2007). Inorg. Chem. 46, 7695–7697. [DOI] [PubMed]
- Bowman, A. C., Milsmann, C., Bill, E., Lobkovsky, E., Weyhermüller, T., Wieghardt, K. & Chirik, P. J. (2010). Inorg. Chem. 49, 6110–6123. [DOI] [PubMed]
- Humphries, M. J., Tellmann, K. P., Gibson, V. C., White, A. J. P. & Williams, D. J. (2005). Organometallics, 24, 2039–2050.
- Kleigrewe, N., Steffen, W., Blömker, T., Kehr, G., Fröhlich, R., Wibbeling, B., Erker, G., Wasilke, J.-C., Wu, G. & Bazan, G. C. (2005). J. Am. Chem. Soc. 127, 13955–13968. [DOI] [PubMed]
- Milani, B., Stabon, E., Zangrando, E., Mestroni, G., Sommazzi, A. & Zannoni, C. (2003). Inorg. Chim. Acta, 349, 209–216.
- Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Wallenhorst, C., Kehr, G., Luftmann, H., Fröhlich, R. & Erker, G. (2008). Organometallics, 27, 6547–6556.
- Zhu, D. & Budzelaar, P. H. M. (2010). Organometallics, 29, 5759–5761.
- Zhu, D., Janssen, F. F. B. J. & Budzelaar, P. H. M. (2010). Organometallics, 29, 1897–1908.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812032321/im2393sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032321/im2393Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


