Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 11;68(Pt 9):m1167–m1168. doi: 10.1107/S1600536812032321

Bis[μ-N-(tert-butyl­dimethyl­silyl)-N-(pyridin-2-ylmeth­yl)amido]­bis­[methyl­cobalt(II)]

Astrid Malassa a, Christine Agthe a, Helmar Görls a, Matthias Westerhausen a,*
PMCID: PMC3435591  PMID: 22969464

Abstract

The green title complex, [Co2(CH3)2(C12H21N2Si)2], was obtained from bis­{[μ-N-tert-butyl­dimethyl­silyl-N-(pyridin-2-ylmeth­yl)amido]­chloridocobalt(II)} and methyl­lithium in diethyl ether at 195 K via a metathesis reaction. The dimeric cobalt(II) complex exhibits a crystallographic center of inversion in the middle of the Co2N2 ring (average Co—N = 2.050 Å). The CoII atom shows a distorted tetra­hedral coordination sphere. The exocyclic Co—N bond length to the pyridyl group shows a similar value of 2.045 (4) Å. The exocyclic methyl group has a rather long Co—C bond length of 2.019 (5) Å.

Related literature  

The metathetical conversion of a cobalt chloride functionality into a methyl cobalt fragment via the reaction with methyllithium was reported earlier for tetra-coordinate cobalt(II) complexes bound to three additional aza-bases, see: Au-Yeung et al. (2007); Bowman et al. (2010); Humphries et al. (2005); Kleigrewe et al. (2005), Wallenhorst et al. (2008). The synthesis of dialkyl cobalt complexes succeeds starting from hexa-coordinate [(L)4CoCl2] with L being a pyridyl base, see: Milani et al. (2003); Zhu et al. (2010). The coordination number of the final cobalt(II) complexes depends on intra­molecular steric strain yielding hexa-coordinate [(bpy)2CoMe2] (bpy = 2,2′-bipyridine) and tetra-coordinate [(py)2CoR 2] (R = CH2C(Me2)Ph). The formation of para-tolyl­cobalt complexes was reported by Zhu & Budzelaar (2010) who proposed a radical mechanism.graphic file with name e-68-m1167-scheme1.jpg

Experimental  

Crystal data  

  • [Co2(CH3)2(C12H21N2Si)2]

  • M r = 590.72

  • Triclinic, Inline graphic

  • a = 8.4751 (8) Å

  • b = 9.8055 (12) Å

  • c = 10.6130 (6) Å

  • α = 72.837 (6)°

  • β = 83.450 (6)°

  • γ = 69.216 (6)°

  • V = 787.81 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 183 K

  • 0.06 × 0.06 × 0.04 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 5417 measured reflections

  • 3551 independent reflections

  • 1685 reflections with I > 2σ(I)

  • R int = 0.074

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.129

  • S = 0.92

  • 3551 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812032321/im2393sup1.cif

e-68-m1167-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032321/im2393Isup2.hkl

e-68-m1167-Isup2.hkl (174.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG, Bonn–Bad Godesberg, Germany) for generous financial support. We also acknowledge funding from the Fonds der Chemischen Industrie (Frankfurt/Main, Germany).

supplementary crystallographic information

Comment

Au-Yeung et al. (2007) performed a metathetical ligand substitution reaction at (tmeda)cobalt(II) 2,6-dimethylphenyl-N-trimethylsilylamide chloride (tmeda = tetramethylethylenediamine) with methyllithium in toluene. Whereas in this complex the cobalt(II) adopts a distorted tetrahedral coordination sphere, severe distortions were observed using tridentate aza-Lewis bases (Bowman et al., 2010; Humphries et al., 2005; Kleigrewe et al., 2005; Wallenhorst et al., 2008). Treatment of tetrakis(pyridine)cobalt(II) dichloride with trimethylsilylmethyllithium or 2-methyl-2-phenylpropyllithium in n-pentane yielded [(py)2CoR2] (R = CH2SiMe3)2, CH2C(Me2)Ph), respectively, with tetra-coordinate cobalt centers (Zhu et al., 2010). Less bulky methyl groups allowed the formation of [(bpy)2CoMe2] with a hexa-coordinate cobalt atom in a slightly distorted octahedral environment (Milani et al., 2003). Contrary to these procedures, a radical mechanism was discussed by Zhu & Budzelaar (2010) for the formation of para-tolyl-cobalt complexes. Whereas all of these cobalt(II) complexes represent mononuclear derivatives, the reaction of bis[N-(pyidin-2-ylmethyl)-N-(tert-butyldimethylsilyl)amido cobalt(II) chloride] with methyllithium in tetrahydrofuran (THF) yielded the centrosymmetric dinuclear title compound 1 with a central planar Co2N2 ring.

Experimental

Bis{chlorido-[N-(pyidin-2-ylmethyl)-N-(tert-butyldimethylsilyl)amido]cobalt(II)} (0.84 g, 1.32 mmol) was dissolved in 15 ml of THF and this solution cooled to -78 °C. Then 1.7 ml (2,72 mmol) of a 1,6M methyllithium solution in diethyl ether was added dropwise. A brown reaction solution formed which was warmed to ambient temperature and stirred for an additional hour. Thereafter all volatile materials were removed and the residue dried in vacuo. This residue was extracted with 15 ml of n-hexane. The volume of this solution was reduced to third of the original volume and cooled to -20 °C. Within several hours green rod-like crystals of 1 precipitated. Yield: 0.21 g (0.36 mmol, 27%).

Refinement

All hydrogen atoms were calculated to idealized positions with C–H distances of 0.98 (methyl), 0.99 (methylene) and 0.95 (phenyl) Å, and were refined with 1.2 times (1.5 for all methyl groups) the isotropic displacement parameter of the corresponding carbon atom. All methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.

Fig. 1.

Molecular structure and numbering scheme of the title compound 1; Displacement ellipsoids are at the 40% probability level. H atoms are neglected for clarity reasons. Symmetry-related atoms are marked with the letter i [symmetry code: (i) -x + 1, -y + 1, -z + 1].

Fig. 2.

Fig. 2.

Packing of the molecules by short ring-interactions (distance between the centroids of the aromatic rings 3.689 (3) Å).

Crystal data

[Co2(CH3)2(C12H21N2Si)2] Z = 1
Mr = 590.72 F(000) = 314
Triclinic, P1 Dx = 1.245 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.4751 (8) Å Cell parameters from 5417 reflections
b = 9.8055 (12) Å θ = 3.3–27.5°
c = 10.6130 (6) Å µ = 1.15 mm1
α = 72.837 (6)° T = 183 K
β = 83.450 (6)° Prism, green
γ = 69.216 (6)° 0.06 × 0.06 × 0.04 mm
V = 787.81 (13) Å3

Data collection

Nonius KappaCCD diffractometer 1685 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.074
Graphite monochromator θmax = 27.5°, θmin = 3.3°
phi– + ω–scan h = −10→9
5417 measured reflections k = −10→12
3551 independent reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0369P)2] where P = (Fo2 + 2Fc2)/3
3551 reflections (Δ/σ)max < 0.001
160 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Experimental. IR (in Nujol between KBr windows, cm-1): = 1715 w, 1583 m, 1273 m, 1244 s, 1146 m, 1080 m, 1036 m, 1008 m, 889 m, 828 s, 770 m, 736 m. MS (DEI, rel. intensity in brackets): m/z = 501 ([M - CoMe2]+, 11%), 165 ([Pyr-CH2-NHSiMe2]+, 100%). Elemental analysis (C26H48Co2N4Si2, 590,72): calcd.: C 52.86, H 8.19, N 9.48; found: C 49.47, H 7.70, N 9.03 (the rather large deviations are caused by extreme sensitivity of the complex towards moisture and air; the low carbon value is a consequence of carbide and carbonate formation despite the fact that V2O5 was added prior to combustion).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.50875 (8) 0.62393 (8) 0.52394 (5) 0.0360 (2)
Si1 0.36965 (16) 0.43232 (17) 0.77488 (11) 0.0373 (4)
N1 0.2891 (5) 0.7874 (4) 0.4452 (3) 0.0342 (10)
N2 0.3562 (4) 0.4948 (4) 0.6037 (3) 0.0306 (9)
C1 0.2668 (7) 0.9328 (6) 0.3756 (4) 0.0466 (14)
H1A 0.3599 0.9681 0.3636 0.056*
C2 0.1139 (7) 1.0311 (6) 0.3217 (4) 0.0524 (15)
H2A 0.1017 1.1325 0.2732 0.063*
C3 −0.0218 (7) 0.9803 (7) 0.3391 (5) 0.0570 (16)
H3A −0.1275 1.0452 0.3003 0.068*
C4 −0.0012 (6) 0.8329 (6) 0.4142 (4) 0.0429 (13)
H4A −0.0938 0.7967 0.4294 0.052*
C5 0.1560 (6) 0.7389 (6) 0.4668 (4) 0.0349 (12)
C6 0.1808 (5) 0.5827 (6) 0.5525 (4) 0.0387 (12)
H6A 0.1501 0.5256 0.5020 0.046*
H6B 0.1020 0.5892 0.6286 0.046*
C7 0.2682 (6) 0.5989 (6) 0.8446 (4) 0.0529 (15)
H7A 0.3243 0.6742 0.8080 0.079*
H7B 0.2788 0.5648 0.9408 0.079*
H7C 0.1485 0.6445 0.8213 0.079*
C8 0.5975 (6) 0.3468 (6) 0.8222 (4) 0.0504 (15)
H8A 0.6571 0.4165 0.7746 0.076*
H8B 0.6479 0.2504 0.7993 0.076*
H8C 0.6067 0.3288 0.9174 0.076*
C9 0.2621 (6) 0.2877 (6) 0.8564 (4) 0.0430 (13)
C10 0.0704 (6) 0.3488 (6) 0.8314 (5) 0.0594 (16)
H10A 0.0208 0.2719 0.8808 0.089*
H10B 0.0505 0.3722 0.7370 0.089*
H10C 0.0180 0.4411 0.8606 0.089*
C11 0.3389 (6) 0.1452 (6) 0.8085 (4) 0.0502 (14)
H11A 0.2790 0.0739 0.8499 0.075*
H11B 0.4584 0.0976 0.8324 0.075*
H11C 0.3288 0.1728 0.7125 0.075*
C12 0.2873 (7) 0.2393 (7) 1.0077 (4) 0.0700 (19)
H12A 0.2415 0.1575 1.0491 0.105*
H12B 0.2284 0.3263 1.0430 0.105*
H12C 0.4080 0.2034 1.0267 0.105*
C13 0.6200 (6) 0.7259 (7) 0.6082 (4) 0.0580 (16)
H13A 0.6269 0.8189 0.5442 0.087*
H13B 0.7339 0.6571 0.6363 0.087*
H13C 0.5532 0.7510 0.6850 0.087*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0333 (4) 0.0450 (5) 0.0363 (4) −0.0195 (3) 0.0038 (3) −0.0147 (3)
Si1 0.0355 (8) 0.0459 (10) 0.0285 (7) −0.0122 (8) 0.0012 (5) −0.0098 (6)
N1 0.039 (2) 0.033 (3) 0.033 (2) −0.015 (2) 0.0103 (16) −0.0130 (19)
N2 0.026 (2) 0.036 (3) 0.0285 (17) −0.009 (2) −0.0019 (15) −0.0068 (16)
C1 0.051 (4) 0.038 (4) 0.050 (3) −0.017 (3) 0.020 (3) −0.015 (3)
C2 0.059 (4) 0.037 (4) 0.048 (3) −0.010 (3) 0.011 (3) −0.004 (3)
C3 0.051 (4) 0.050 (4) 0.054 (3) 0.000 (3) −0.005 (3) −0.010 (3)
C4 0.032 (3) 0.045 (4) 0.046 (3) −0.009 (3) 0.001 (2) −0.010 (3)
C5 0.037 (3) 0.041 (3) 0.024 (2) −0.012 (3) 0.0019 (19) −0.008 (2)
C6 0.038 (3) 0.044 (4) 0.037 (2) −0.022 (3) 0.003 (2) −0.007 (2)
C7 0.061 (4) 0.057 (4) 0.045 (3) −0.018 (3) 0.003 (2) −0.024 (3)
C8 0.045 (3) 0.070 (4) 0.038 (3) −0.014 (3) −0.007 (2) −0.020 (3)
C9 0.044 (3) 0.042 (4) 0.029 (2) −0.005 (3) 0.005 (2) −0.003 (2)
C10 0.050 (4) 0.054 (4) 0.068 (3) −0.022 (3) 0.016 (3) −0.009 (3)
C11 0.048 (3) 0.042 (4) 0.056 (3) −0.018 (3) 0.010 (2) −0.007 (3)
C12 0.084 (4) 0.064 (5) 0.040 (3) −0.019 (4) 0.001 (3) 0.009 (3)
C13 0.055 (4) 0.089 (5) 0.055 (3) −0.047 (4) 0.013 (3) −0.034 (3)

Geometric parameters (Å, º)

Co1—C13 2.019 (5) C6—H6B 0.9900
Co1—N2i 2.032 (3) C7—H7A 0.9800
Co1—N1 2.045 (4) C7—H7B 0.9800
Co1—N2 2.067 (4) C7—H7C 0.9800
Co1—Co1i 2.6812 (14) C8—H8A 0.9800
Si1—N2 1.741 (3) C8—H8B 0.9800
Si1—C8 1.873 (4) C8—H8C 0.9800
Si1—C7 1.877 (5) C9—C11 1.528 (7)
Si1—C9 1.898 (5) C9—C10 1.544 (6)
N1—C5 1.345 (5) C9—C12 1.551 (6)
N1—C1 1.354 (6) C10—H10A 0.9800
N2—C6 1.499 (5) C10—H10B 0.9800
N2—Co1i 2.032 (3) C10—H10C 0.9800
C1—C2 1.376 (6) C11—H11A 0.9800
C1—H1A 0.9500 C11—H11B 0.9800
C2—C3 1.381 (7) C11—H11C 0.9800
C2—H2A 0.9500 C12—H12A 0.9800
C3—C4 1.388 (7) C12—H12B 0.9800
C3—H3A 0.9500 C12—H12C 0.9800
C4—C5 1.390 (6) C13—H13A 0.9800
C4—H4A 0.9500 C13—H13B 0.9800
C5—C6 1.487 (6) C13—H13C 0.9800
C6—H6A 0.9900
C13—Co1—N2i 119.40 (17) N2—C6—H6B 108.5
C13—Co1—N1 105.8 (2) H6A—C6—H6B 107.5
N2i—Co1—N1 112.97 (13) Si1—C7—H7A 109.5
C13—Co1—N2 130.97 (16) Si1—C7—H7B 109.5
N2i—Co1—N2 98.30 (12) H7A—C7—H7B 109.5
N1—Co1—N2 84.19 (15) Si1—C7—H7C 109.5
C13—Co1—Co1i 151.34 (17) H7A—C7—H7C 109.5
N2i—Co1—Co1i 49.71 (10) H7B—C7—H7C 109.5
N1—Co1—Co1i 102.57 (11) Si1—C8—H8A 109.5
N2—Co1—Co1i 48.59 (10) Si1—C8—H8B 109.5
N2—Si1—C8 108.95 (18) H8A—C8—H8B 109.5
N2—Si1—C7 109.2 (2) Si1—C8—H8C 109.5
C8—Si1—C7 108.4 (2) H8A—C8—H8C 109.5
N2—Si1—C9 114.74 (19) H8B—C8—H8C 109.5
C8—Si1—C9 108.4 (2) C11—C9—C10 107.8 (4)
C7—Si1—C9 107.0 (2) C11—C9—C12 107.5 (4)
C5—N1—C1 119.0 (4) C10—C9—C12 107.5 (4)
C5—N1—Co1 113.7 (3) C11—C9—Si1 111.1 (3)
C1—N1—Co1 127.3 (3) C10—C9—Si1 113.3 (3)
C6—N2—Si1 114.5 (2) C12—C9—Si1 109.4 (3)
C6—N2—Co1i 109.3 (2) C9—C10—H10A 109.5
Si1—N2—Co1i 125.9 (2) C9—C10—H10B 109.5
C6—N2—Co1 108.8 (3) H10A—C10—H10B 109.5
Si1—N2—Co1 111.27 (17) C9—C10—H10C 109.5
Co1i—N2—Co1 81.70 (12) H10A—C10—H10C 109.5
N1—C1—C2 122.1 (5) H10B—C10—H10C 109.5
N1—C1—H1A 118.9 C9—C11—H11A 109.5
C2—C1—H1A 118.9 C9—C11—H11B 109.5
C1—C2—C3 119.1 (5) H11A—C11—H11B 109.5
C1—C2—H2A 120.4 C9—C11—H11C 109.5
C3—C2—H2A 120.4 H11A—C11—H11C 109.5
C2—C3—C4 119.0 (5) H11B—C11—H11C 109.5
C2—C3—H3A 120.5 C9—C12—H12A 109.5
C4—C3—H3A 120.5 C9—C12—H12B 109.5
C3—C4—C5 119.4 (5) H12A—C12—H12B 109.5
C3—C4—H4A 120.3 C9—C12—H12C 109.5
C5—C4—H4A 120.3 H12A—C12—H12C 109.5
N1—C5—C4 121.3 (4) H12B—C12—H12C 109.5
N1—C5—C6 117.8 (4) Co1—C13—H13A 109.5
C4—C5—C6 120.8 (4) Co1—C13—H13B 109.5
C5—C6—N2 115.1 (4) H13A—C13—H13B 109.5
C5—C6—H6A 108.5 Co1—C13—H13C 109.5
N2—C6—H6A 108.5 H13A—C13—H13C 109.5
C5—C6—H6B 108.5 H13B—C13—H13C 109.5

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2393).

References

  1. Au-Yeung, H. Y., Lam, C. H., Lam, C., Wong, W. & Lee, H. K. (2007). Inorg. Chem. 46, 7695–7697. [DOI] [PubMed]
  2. Bowman, A. C., Milsmann, C., Bill, E., Lobkovsky, E., Weyhermüller, T., Wieghardt, K. & Chirik, P. J. (2010). Inorg. Chem. 49, 6110–6123. [DOI] [PubMed]
  3. Humphries, M. J., Tellmann, K. P., Gibson, V. C., White, A. J. P. & Williams, D. J. (2005). Organometallics, 24, 2039–2050.
  4. Kleigrewe, N., Steffen, W., Blömker, T., Kehr, G., Fröhlich, R., Wibbeling, B., Erker, G., Wasilke, J.-C., Wu, G. & Bazan, G. C. (2005). J. Am. Chem. Soc. 127, 13955–13968. [DOI] [PubMed]
  5. Milani, B., Stabon, E., Zangrando, E., Mestroni, G., Sommazzi, A. & Zannoni, C. (2003). Inorg. Chim. Acta, 349, 209–216.
  6. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wallenhorst, C., Kehr, G., Luftmann, H., Fröhlich, R. & Erker, G. (2008). Organometallics, 27, 6547–6556.
  10. Zhu, D. & Budzelaar, P. H. M. (2010). Organometallics, 29, 5759–5761.
  11. Zhu, D., Janssen, F. F. B. J. & Budzelaar, P. H. M. (2010). Organometallics, 29, 1897–1908.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812032321/im2393sup1.cif

e-68-m1167-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032321/im2393Isup2.hkl

e-68-m1167-Isup2.hkl (174.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES