Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 11;68(Pt 9):m1172. doi: 10.1107/S1600536812034502

{4,4′-Dimethyl-2,2′-[2,2-dimethyl­propane-1,3-diylbis(nitrilo­methanylyl­idene)]diphenolato}copper(II) monohydrate

Hadi Kargar a,*, Reza Kia b, Fatemeh Ganji a, Valiollah Mirkhani c
PMCID: PMC3435595  PMID: 22969468

Abstract

The asymmetric unit of the title compound, [Cu(C21H24N2O2)]·H2O, comprises half of a Schiff base complex and half of a water mol­ecule. The whole compound is generated by crystallographic twofold rotation symmetry. The geometry around the CuII atom, located on a twofold axis, is distorted square-planar, which is supported by the N2O2 donor atoms of the coordinating Schiff base ligand. The dihedral angle between the symmetry-related benzene rings is 47.5 (4)°. In the crystal, the water mol­ecule that is hydrogen bonded to the coordinated O atoms links the mol­ecules via O—H⋯O inter­actions into chains parallel to [001]. The crystal structure is further stabilized by C—H⋯π inter­actions, and by π–π inter­actions involving inversion-related chelate rings [centroid–centroid distance = 3.480 (4) Å].

Related literature  

For applications of Schiff bases in coordination chemistry, see: Granovski et al. (1993); Blower (1998). For related structures, see: Ghaemi et al. (2011); Kargar et al. (2011, 2012). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-68-m1172-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C21H24N2O2)]·H2O

  • M r = 417.98

  • Monoclinic, Inline graphic

  • a = 13.353 (5) Å

  • b = 15.986 (5) Å

  • c = 10.023 (5) Å

  • β = 104.696 (5)°

  • V = 2069.5 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 296 K

  • 0.11 × 0.08 × 0.05 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.891, T max = 0.948

  • 4967 measured reflections

  • 1779 independent reflections

  • 1053 reflections with I > 2σ(I)

  • R int = 0.101

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.084

  • wR(F 2) = 0.209

  • S = 0.95

  • 1779 reflections

  • 125 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.96 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812034502/su2488sup1.cif

e-68-m1172-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034502/su2488Isup2.hkl

e-68-m1172-Isup2.hkl (87.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1 0.85 2.46 2.783 (7) 103
O1W—H1W1⋯O1i 0.85 2.44 2.783 (7) 105
C3—H3⋯O1W ii 0.93 2.55 3.48 (1) 173
C8—H8BCg1iii 0.97 2.83 3.693 (9) 148
C11—H11BCg1iv 0.96 2.98 3.850 (12) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HK and FG thank PNU for financial support.

supplementary crystallographic information

Comment

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower, 1998). In continuation of our work on the structural analysis of Schiff base metal complexes (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011), we synthesized the title compound and report herein on its crystal structure.

The asymmetric unit of the title compound, Fig. 1, comprises half of a Schiff base complex and half a water molecule. The Cu1 and C9 atoms of the complex and the O atom of the water molecule lie on a two-fold rotation axis which generates the whole complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those reported for related structures (Kargar et al., 2012; Kargar et al., 2011; Ghaemi et al., (2011). The geometry around the CuII atom is distorted square-planar which is supported by the N2O2 donor atoms of the coordinated Schiff base ligand. The dihedral angle between the substituted benzene rings is 47.5 (4)°.

In the crystal, the water molecule that is hydrogen bonded to the coordinated O atoms, O1, mediates linking of molecules by C—H···O interactions (Table 1 and Fig. 2). The crystal structure is further stabilized by C-H···π interactions (Table 1), and by π-π interactions involving inversion related chelate rings [Cg···Cgi = 3.480 (4) Å; Cg is the centroid of the Cu1/O1/C1/C6/C7/N1 ring; symmetry code: (i) 1 - x, -y, -1 - z].

Experimental

The title compound was synthesized by adding 5-methyl-salicylaldehyde-2,2-dimethyl-1,3-propanediamine (2 mmol) to a solution of CuCl2. 4H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Dark-green single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement

The water H atom was located in a difference Fourier map and refined as a riding atom with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso (H) = k x Ueq(C), where k = 1.5 for CH3 H-atoms, and = 1.2 for other H-atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, with the atom numbering. The displacement ellipsoids are drawn at the 40% probability level. The O-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; symmetry code for suffix A = -x+1, y, -z-1/2).

Fig. 2.

Fig. 2.

A view along the b axis of the crystal packing of the title compound showing the C—H···O interactions as dashed lines [see Table 1 for details; only the H atoms involved in these interactions are shown].

Crystal data

[Cu(C21H24N2O2)]·H2O F(000) = 876
Mr = 417.98 Dx = 1.342 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 512 reflections
a = 13.353 (5) Å θ = 2.5–27.4°
b = 15.986 (5) Å µ = 1.08 mm1
c = 10.023 (5) Å T = 296 K
β = 104.696 (5)° Block, dark-green
V = 2069.5 (14) Å3 0.11 × 0.08 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 1779 independent reflections
Radiation source: fine-focus sealed tube 1053 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.101
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −15→11
Tmin = 0.891, Tmax = 0.948 k = −18→18
4967 measured reflections l = −10→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0775P)2] where P = (Fo2 + 2Fc2)/3
1779 reflections (Δ/σ)max < 0.001
125 parameters Δρmax = 1.03 e Å3
0 restraints Δρmin = −0.96 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.5000 0.01026 (6) −0.2500 0.0266 (5)
O1 0.4089 (4) −0.0737 (2) −0.3499 (6) 0.0312 (14)
N1 0.4554 (5) 0.0944 (3) −0.3912 (7) 0.0305 (16)
C1 0.3331 (6) −0.0612 (4) −0.4620 (9) 0.0293 (19)
C2 0.2617 (6) −0.1276 (4) −0.5073 (10) 0.042 (3)
H2 0.2662 −0.1758 −0.4541 0.050*
C3 0.1860 (7) −0.1214 (5) −0.6291 (11) 0.046 (3)
H3 0.1375 −0.1642 −0.6530 0.055*
C4 0.1790 (6) −0.0526 (5) −0.7191 (10) 0.045 (2)
C6 0.3222 (6) 0.0109 (4) −0.5441 (9) 0.0311 (19)
C7 0.3854 (6) 0.0845 (4) −0.5067 (10) 0.032 (2)
H7 0.3753 0.1282 −0.5699 0.038*
C8 0.5166 (6) 0.1727 (4) −0.3691 (9) 0.036 (2)
H8A 0.4984 0.2056 −0.4531 0.043*
H8B 0.5894 0.1587 −0.3512 0.043*
C9 0.5000 0.2260 (6) −0.2500 0.048 (4)
C5 0.2449 (6) 0.0134 (5) −0.6699 (10) 0.042 (2)
H5 0.2380 0.0621 −0.7224 0.051*
C11 0.1004 (8) −0.0471 (7) −0.8564 (12) 0.069 (3)
H11B 0.1206 −0.0042 −0.9113 0.104*
H11A 0.0338 −0.0338 −0.8421 0.104*
H11C 0.0968 −0.0999 −0.9032 0.104*
C10 0.4033 (10) 0.2806 (6) −0.2988 (13) 0.087 (5)
H10B 0.3947 0.3149 −0.2238 0.130*
H10A 0.3436 0.2455 −0.3299 0.130*
H10C 0.4110 0.3157 −0.3733 0.130*
O1W 0.5000 −0.2254 (4) −0.2500 0.091 (5)
H1W1 0.5281 −0.1936 −0.2981 0.137*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0194 (7) 0.0263 (6) 0.0300 (9) 0.000 −0.0015 (6) 0.000
O1 0.026 (3) 0.026 (2) 0.031 (4) −0.0008 (18) −0.012 (3) −0.005 (2)
N1 0.033 (4) 0.032 (3) 0.030 (5) −0.005 (2) 0.016 (4) 0.003 (3)
C1 0.018 (4) 0.038 (4) 0.030 (5) 0.001 (3) 0.003 (4) −0.005 (3)
C2 0.031 (5) 0.037 (4) 0.049 (7) 0.000 (3) −0.007 (5) 0.000 (4)
C3 0.020 (5) 0.060 (5) 0.052 (7) −0.007 (3) 0.001 (5) −0.014 (5)
C4 0.017 (4) 0.068 (5) 0.046 (7) −0.005 (4) −0.003 (5) −0.003 (5)
C6 0.022 (4) 0.036 (3) 0.032 (5) 0.007 (3) 0.001 (4) 0.001 (3)
C7 0.030 (5) 0.029 (3) 0.036 (6) 0.007 (3) 0.006 (5) 0.011 (3)
C8 0.026 (5) 0.032 (4) 0.044 (6) −0.007 (3) −0.002 (5) 0.004 (3)
C9 0.046 (9) 0.025 (5) 0.073 (12) 0.000 0.018 (8) 0.000
C5 0.026 (5) 0.052 (4) 0.043 (6) 0.005 (3) −0.002 (4) 0.007 (4)
C11 0.036 (6) 0.113 (8) 0.049 (8) −0.013 (5) −0.007 (6) 0.000 (6)
C10 0.123 (12) 0.058 (6) 0.089 (11) 0.050 (6) 0.045 (9) 0.034 (6)
O1W 0.106 (10) 0.033 (5) 0.106 (11) 0.000 −0.026 (8) 0.000

Geometric parameters (Å, º)

Cu1—O1i 1.914 (4) C6—C7 1.441 (10)
Cu1—O1 1.914 (4) C7—H7 0.9300
Cu1—N1i 1.934 (6) C8—C9 1.527 (10)
Cu1—N1 1.934 (6) C8—H8A 0.9700
O1—C1 1.322 (9) C8—H8B 0.9700
N1—C7 1.300 (10) C9—C8i 1.527 (10)
N1—C8 1.480 (8) C9—C10 1.533 (10)
C1—C6 1.403 (10) C9—C10i 1.533 (10)
C1—C2 1.423 (10) C5—H5 0.9300
C2—C3 1.377 (12) C11—H11B 0.9600
C2—H2 0.9300 C11—H11A 0.9600
C3—C4 1.411 (13) C11—H11C 0.9600
C3—H3 0.9300 C10—H10B 0.9600
C4—C5 1.382 (11) C10—H10A 0.9600
C4—C11 1.507 (12) C10—H10C 0.9600
C6—C5 1.413 (11) O1W—H1W1 0.8513
O1i—Cu1—O1 91.0 (3) N1—C8—C9 113.9 (7)
O1i—Cu1—N1i 93.9 (2) N1—C8—H8A 108.8
O1—Cu1—N1i 155.2 (3) C9—C8—H8A 108.8
O1i—Cu1—N1 155.1 (3) N1—C8—H8B 108.8
O1—Cu1—N1 93.9 (2) C9—C8—H8B 108.8
N1i—Cu1—N1 91.9 (4) H8A—C8—H8B 107.7
C1—O1—Cu1 125.9 (4) C8—C9—C8i 112.2 (8)
C7—N1—C8 118.8 (6) C8—C9—C10 110.2 (6)
C7—N1—Cu1 125.8 (4) C8i—C9—C10 106.9 (6)
C8—N1—Cu1 115.0 (5) C8—C9—C10i 106.9 (6)
O1—C1—C6 124.5 (6) C8i—C9—C10i 110.2 (6)
O1—C1—C2 117.8 (7) C10—C9—C10i 110.5 (11)
C6—C1—C2 117.6 (8) C4—C5—C6 123.4 (8)
C3—C2—C1 120.8 (8) C4—C5—H5 118.3
C3—C2—H2 119.6 C6—C5—H5 118.3
C1—C2—H2 119.6 C4—C11—H11B 109.5
C2—C3—C4 122.5 (7) C4—C11—H11A 109.5
C2—C3—H3 118.8 H11B—C11—H11A 109.5
C4—C3—H3 118.8 C4—C11—H11C 109.5
C5—C4—C3 115.8 (8) H11B—C11—H11C 109.5
C5—C4—C11 121.0 (9) H11A—C11—H11C 109.5
C3—C4—C11 123.1 (8) C9—C10—H10B 109.5
C1—C6—C5 119.4 (7) C9—C10—H10A 109.5
C1—C6—C7 123.4 (7) H10B—C10—H10A 109.5
C5—C6—C7 117.1 (7) C9—C10—H10C 109.5
N1—C7—C6 124.9 (7) H10B—C10—H10C 109.5
N1—C7—H7 117.5 H10A—C10—H10C 109.5
C6—C7—H7 117.5
O1i—Cu1—O1—C1 −166.5 (8) C2—C1—C6—C5 −2.8 (12)
N1i—Cu1—O1—C1 92.1 (9) O1—C1—C6—C7 −7.9 (13)
N1—Cu1—O1—C1 −10.9 (7) C2—C1—C6—C7 176.4 (8)
O1i—Cu1—N1—C7 101.3 (8) C8—N1—C7—C6 178.2 (8)
O1—Cu1—N1—C7 0.5 (8) Cu1—N1—C7—C6 5.8 (13)
N1i—Cu1—N1—C7 −155.3 (9) C1—C6—C7—N1 −3.6 (14)
O1i—Cu1—N1—C8 −71.3 (8) C5—C6—C7—N1 175.7 (8)
O1—Cu1—N1—C8 −172.1 (6) C7—N1—C8—C9 116.3 (8)
N1i—Cu1—N1—C8 32.1 (4) Cu1—N1—C8—C9 −70.5 (7)
Cu1—O1—C1—C6 15.7 (11) N1—C8—C9—C8i 35.3 (4)
Cu1—O1—C1—C2 −168.6 (6) N1—C8—C9—C10 −83.7 (9)
O1—C1—C2—C3 −174.8 (8) N1—C8—C9—C10i 156.2 (8)
C6—C1—C2—C3 1.2 (14) C3—C4—C5—C6 6.1 (15)
C1—C2—C3—C4 4.2 (15) C11—C4—C5—C6 −177.9 (9)
C2—C3—C4—C5 −7.7 (15) C1—C6—C5—C4 −1.0 (14)
C2—C3—C4—C11 176.4 (10) C7—C6—C5—C4 179.7 (9)
O1—C1—C6—C5 172.9 (8)

Symmetry code: (i) −x+1, y, −z−1/2.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O1 0.85 2.46 2.783 (7) 103
O1W—H1W1···O1i 0.85 2.44 2.783 (7) 105
C3—H3···O1Wii 0.93 2.55 3.48 (1) 173
C8—H8B···Cg1iii 0.97 2.83 3.693 (9) 148
C11—H11B···Cg1iv 0.96 2.98 3.850 (12) 151

Symmetry codes: (i) −x+1, y, −z−1/2; (ii) −x+1/2, −y−1/2, −z−1; (iii) x+3/2, y+1/2, z−1; (iv) −x+1/2, y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2488).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Blower, P. J. (1998). Transition Met. Chem. 23, 109–112.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ghaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1445–m1446. [DOI] [PMC free article] [PubMed]
  5. Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
  6. Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, m941. [DOI] [PMC free article] [PubMed]
  7. Kargar, H., Kia, R., Sharafi, Z. & Tahir, M. N. (2012). Acta Cryst. E68, m82. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812034502/su2488sup1.cif

e-68-m1172-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034502/su2488Isup2.hkl

e-68-m1172-Isup2.hkl (87.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES