Abstract
In the title compound, [Ag2(C10H6NO2)2]n, the AgI atom is coordinated by one N atom and two O atoms from three quinoline-3-carboxylate ligands in a T-shaped fashion, with an additional Ag⋯Ag distance of 2.9468 (6) Å. The ligands connect the AgI atoms into a double-chain structure along [010]. Weak Ag⋯O interactions [Ag⋯O = 2.802 (3) and 2.877 (4) Å] link the double-chains into a layer network parallel to (101). π–π interactions are also observed in the layer network [centroid–centroid distances = 3.780 (3) and 3.777 (3) Å].
Related literature
For background to the design and applications of structures with metal-organic frameworks and of AgI complexes, see: Sun et al. (2010 ▶); Wei et al. (2006 ▶); Yilmaz et al. (2008 ▶). For related structures, see: Baenziger et al. (1986 ▶); Yang et al. (2004 ▶); Yeşiilel et al. (2011 ▶); You et al. (2004 ▶).
Experimental
Crystal data
[Ag2(C10H6NO2)2]
M r = 560.06
Triclinic,
a = 8.0583 (15) Å
b = 8.4824 (15) Å
c = 12.934 (2) Å
α = 93.225 (2)°
β = 94.812 (2)°
γ = 104.640 (2)°
V = 849.6 (3) Å3
Z = 2
Mo Kα radiation
μ = 2.34 mm−1
T = 293 K
0.13 × 0.11 × 0.10 mm
Data collection
Bruker APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.745, T max = 0.792
6197 measured reflections
2962 independent reflections
2298 reflections with I > 2σ(I)
R int = 0.027
Refinement
R[F 2 > 2σ(F 2)] = 0.030
wR(F 2) = 0.081
S = 1.01
2962 reflections
253 parameters
168 restraints
H-atom parameters constrained
Δρmax = 0.51 e Å−3
Δρmin = −0.52 e Å−3
Data collection: SMART (Bruker, 2007 ▶); cell refinement: SAINT (Bruker, 2007 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: XP in SHELXTL (Sheldrick, 2008 ▶) and DIAMOND (Brandenburg, 1999 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035209/hy2558sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035209/hy2558Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected bond lengths (Å).
| Ag1—N1 | 2.429 (3) |
| Ag1—O2i | 2.219 (3) |
| Ag1—O4ii | 2.220 (3) |
| Ag2—N2 | 2.373 (3) |
| Ag2—O1i | 2.282 (3) |
| Ag2—O3ii | 2.258 (3) |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The authors thank Jiangsu University for supporting this research.
supplementary crystallographic information
Comment
In recent years, the design and synthesis of metal-organic frameworks (MOFs) based on assembly of suitable and rigid building blocks have attracted great attention for their interesting structures and potential applications in catalysis, separation, gas storage and molecular recognition (Wei et al., 2006). Moreover, Ag(I) ion is easy to form short Ag–Ag contacts as well as ligand unsupported interactions, which have been proved to be two of the most important factors contributing to the formation of such complexes and special properties (Yilmaz et al., 2008). Much attention has been paid to Ag(I) ion as its d10 closed-shell electronic configuration. It demonstrates a dynamic range of coordinative geometries, including linear, trigonal-planar, tetrahedral and trigonal-pyramidal. In occasional, it also has examples of square-planar, pyramidal and octahedral geometries, and a tendency to form an argentophilic interaction, both of which may lead to discovery of novel structural motifs (Sun et al., 2010). It is well known that quinoline-3-carboxylic acid (HL) acts as a polyfunctional ligand in metal complexes and coordinates to metals by means of its carboxylate oxygen and a nitrogen atom, exhibiting different coordination modes, such as monodentate-N and monodentate-O, bis(monodentate), bidentate(N, O) and bridging form. In addition, HL also displays an extend π-system, which is beneficial for the formation of π–π interactions to generate high dimensional supramolecular architectures and further stabilize the network. Therefore, we selected silver ion and HL to obtain the title compound under hydrothermal conditions.
In the title compound, the AgI is coordinated by one N atom and two O atoms from three L ligands (Fig. 1, Table 1) and also forms an Ag···Ag contact (Baenziger et al., 1986; Yang et al., 2004). The distance of Ag1···Ag2 is 2.9468 (6) Å. It is shorter than the sum of the van der Waals radii of two silver(I) atoms (3.44 Å), thus the Ag—Ag interaction is found (Yeşilel et al., 2011; You et al., 2004). The bidentate bridging carboxylate group of the ligand connect two Ag atoms and the pyridine N atom links another Ag atom, leading to the formation of a one-dimensional double-chain structure (Fig. 2). The weak Ag···O interactions, with Ag1···O2i and Ag2···O1ii distances of 2.802 (3) and 2.877 (4) Å [symmetry codes: (i) 2-x, -y, 1-z; (ii) 1-x, -y, 1-z], link the double-chains into a layer network. π–π interactions are observed in the layer network [centroid–centroid distances = 3.780 (3) and 3.777 (3) Å].
Experimental
HL was purchased commercially and used without further purification. A mixture of AgCl (14.33 mg, 0.1 mmol) and HL (17.30 mg, 0.1 mmol) was dissolved in a 10 ml of water with pH = 6. The resulting mixture was heated in a 15 ml Teflon-lined autoclave at 438 K for three days. Then the autoclave was slowly cooled to room temperature and colourless block-shaped crystals were obtained in a yield of 50%.
Refinement
H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.]
Fig. 2.
The one-dimensional double-chain of the title compound. H atoms have been omitted for clarity.
Crystal data
| [Ag2(C10H6NO2)2] | Z = 2 |
| Mr = 560.06 | F(000) = 544 |
| Triclinic, P1 | Dx = 2.189 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 8.0583 (15) Å | Cell parameters from 7499 reflections |
| b = 8.4824 (15) Å | θ = 1.6–27.5° |
| c = 12.934 (2) Å | µ = 2.34 mm−1 |
| α = 93.225 (2)° | T = 293 K |
| β = 94.812 (2)° | Block, colourless |
| γ = 104.640 (2)° | 0.13 × 0.11 × 0.10 mm |
| V = 849.6 (3) Å3 |
Data collection
| Bruker APEX CCD diffractometer | 2962 independent reflections |
| Radiation source: fine-focus sealed tube | 2298 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.027 |
| φ and ω scans | θmax = 25.0°, θmin = 1.6° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
| Tmin = 0.745, Tmax = 0.792 | k = −10→10 |
| 6197 measured reflections | l = −15→13 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.081 | H-atom parameters constrained |
| S = 1.01 | w = 1/[σ2(Fo2) + (0.0428P)2] where P = (Fo2 + 2Fc2)/3 |
| 2962 reflections | (Δ/σ)max = 0.001 |
| 253 parameters | Δρmax = 0.51 e Å−3 |
| 168 restraints | Δρmin = −0.52 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.8357 (5) | −0.0050 (5) | 0.4189 (3) | 0.0298 (10) | |
| H1 | 0.7730 | −0.0137 | 0.4764 | 0.036* | |
| C2 | 0.8690 (5) | −0.1487 (5) | 0.3753 (3) | 0.0278 (10) | |
| C3 | 0.9556 (5) | −0.1377 (5) | 0.2879 (3) | 0.0284 (10) | |
| H3 | 0.9797 | −0.2302 | 0.2574 | 0.034* | |
| C4 | 1.0077 (5) | 0.0126 (5) | 0.2442 (3) | 0.0281 (10) | |
| C5 | 0.9753 (5) | 0.1526 (5) | 0.2963 (3) | 0.0268 (10) | |
| C6 | 1.0337 (6) | 0.3077 (6) | 0.2576 (4) | 0.0335 (11) | |
| H6 | 1.0133 | 0.3995 | 0.2916 | 0.040* | |
| C7 | 1.1193 (6) | 0.3232 (6) | 0.1711 (4) | 0.0408 (12) | |
| H7 | 1.1604 | 0.4260 | 0.1473 | 0.049* | |
| C8 | 1.1461 (6) | 0.1846 (6) | 0.1173 (4) | 0.0413 (12) | |
| H8 | 1.2010 | 0.1959 | 0.0567 | 0.050* | |
| C9 | 1.0927 (6) | 0.0338 (6) | 0.1529 (4) | 0.0388 (12) | |
| H9 | 1.1125 | −0.0564 | 0.1166 | 0.047* | |
| C10 | 0.8127 (5) | −0.3042 (5) | 0.4268 (3) | 0.0297 (10) | |
| C11 | 0.5510 (6) | 0.8739 (5) | 0.6646 (3) | 0.0298 (10) | |
| H11 | 0.6006 | 0.8810 | 0.6021 | 0.036* | |
| C12 | 0.5331 (5) | 1.0201 (5) | 0.7144 (3) | 0.0271 (10) | |
| C13 | 0.4575 (5) | 1.0106 (5) | 0.8051 (3) | 0.0286 (10) | |
| H13 | 0.4414 | 1.1043 | 0.8391 | 0.034* | |
| C14 | 0.4036 (6) | 0.8582 (6) | 0.8472 (3) | 0.0309 (10) | |
| C15 | 0.4289 (5) | 0.7163 (5) | 0.7920 (4) | 0.0298 (10) | |
| C16 | 0.3802 (6) | 0.5640 (6) | 0.8339 (4) | 0.0391 (12) | |
| H16 | 0.3952 | 0.4710 | 0.7984 | 0.047* | |
| C17 | 0.3109 (7) | 0.5526 (7) | 0.9267 (4) | 0.0519 (14) | |
| H17 | 0.2809 | 0.4517 | 0.9544 | 0.062* | |
| C18 | 0.2839 (7) | 0.6908 (7) | 0.9811 (4) | 0.0540 (15) | |
| H18 | 0.2359 | 0.6804 | 1.0440 | 0.065* | |
| C19 | 0.3277 (6) | 0.8391 (6) | 0.9421 (4) | 0.0413 (12) | |
| H19 | 0.3075 | 0.9294 | 0.9781 | 0.050* | |
| C20 | 0.5961 (6) | 1.1778 (5) | 0.6657 (4) | 0.0302 (10) | |
| N1 | 0.8868 (4) | 0.1405 (4) | 0.3842 (3) | 0.0287 (8) | |
| N2 | 0.5033 (5) | 0.7289 (4) | 0.6994 (3) | 0.0306 (9) | |
| O1 | 0.7023 (4) | −0.3102 (4) | 0.4894 (3) | 0.0389 (8) | |
| O2 | 0.8812 (4) | −0.4181 (4) | 0.4039 (2) | 0.0372 (8) | |
| O3 | 0.5866 (5) | 1.3064 (4) | 0.7133 (3) | 0.0479 (9) | |
| O4 | 0.6565 (4) | 1.1679 (4) | 0.5802 (3) | 0.0428 (9) | |
| Ag1 | 0.79527 (5) | 0.35203 (4) | 0.48083 (3) | 0.03910 (14) | |
| Ag2 | 0.60900 (5) | 0.52274 (4) | 0.61650 (3) | 0.04425 (15) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.034 (2) | 0.027 (2) | 0.031 (2) | 0.0094 (19) | 0.0114 (19) | 0.0067 (19) |
| C2 | 0.030 (2) | 0.025 (2) | 0.030 (2) | 0.0087 (18) | 0.0055 (18) | 0.0059 (19) |
| C3 | 0.038 (2) | 0.022 (2) | 0.027 (2) | 0.0122 (18) | 0.0074 (18) | −0.0037 (18) |
| C4 | 0.030 (2) | 0.027 (2) | 0.028 (2) | 0.0090 (18) | 0.0047 (18) | 0.0029 (19) |
| C5 | 0.028 (2) | 0.027 (2) | 0.028 (2) | 0.0109 (18) | 0.0063 (18) | 0.0026 (18) |
| C6 | 0.039 (2) | 0.023 (2) | 0.041 (3) | 0.0095 (19) | 0.011 (2) | 0.009 (2) |
| C7 | 0.049 (3) | 0.033 (3) | 0.043 (3) | 0.010 (2) | 0.013 (2) | 0.014 (2) |
| C8 | 0.052 (3) | 0.042 (3) | 0.034 (2) | 0.013 (2) | 0.020 (2) | 0.008 (2) |
| C9 | 0.049 (3) | 0.033 (3) | 0.039 (3) | 0.015 (2) | 0.015 (2) | 0.004 (2) |
| C10 | 0.035 (2) | 0.026 (2) | 0.028 (2) | 0.0075 (19) | 0.0043 (19) | 0.0004 (19) |
| C11 | 0.039 (2) | 0.025 (2) | 0.028 (2) | 0.0107 (19) | 0.0117 (19) | 0.0057 (19) |
| C12 | 0.031 (2) | 0.022 (2) | 0.031 (2) | 0.0085 (18) | 0.0056 (18) | 0.0040 (19) |
| C13 | 0.039 (2) | 0.022 (2) | 0.028 (2) | 0.0117 (19) | 0.0066 (18) | 0.0001 (18) |
| C14 | 0.037 (2) | 0.028 (2) | 0.030 (2) | 0.0104 (19) | 0.0079 (19) | 0.0065 (19) |
| C15 | 0.030 (2) | 0.025 (2) | 0.036 (2) | 0.0079 (18) | 0.0079 (19) | 0.0067 (19) |
| C16 | 0.053 (3) | 0.027 (2) | 0.039 (3) | 0.011 (2) | 0.014 (2) | 0.006 (2) |
| C17 | 0.069 (3) | 0.040 (3) | 0.050 (3) | 0.012 (2) | 0.019 (3) | 0.017 (2) |
| C18 | 0.067 (3) | 0.053 (3) | 0.045 (3) | 0.014 (3) | 0.029 (3) | 0.014 (3) |
| C19 | 0.053 (3) | 0.037 (3) | 0.036 (3) | 0.013 (2) | 0.013 (2) | 0.004 (2) |
| C20 | 0.038 (2) | 0.021 (2) | 0.034 (2) | 0.0117 (19) | 0.008 (2) | 0.0045 (19) |
| N1 | 0.0348 (19) | 0.021 (2) | 0.031 (2) | 0.0072 (16) | 0.0088 (16) | 0.0006 (16) |
| N2 | 0.042 (2) | 0.023 (2) | 0.031 (2) | 0.0113 (16) | 0.0147 (17) | 0.0053 (16) |
| O1 | 0.0514 (19) | 0.0296 (18) | 0.0437 (19) | 0.0174 (15) | 0.0238 (16) | 0.0104 (15) |
| O2 | 0.0490 (18) | 0.0205 (17) | 0.0459 (19) | 0.0114 (14) | 0.0182 (16) | 0.0036 (15) |
| O3 | 0.078 (2) | 0.0253 (18) | 0.046 (2) | 0.0173 (17) | 0.0210 (18) | 0.0058 (16) |
| O4 | 0.061 (2) | 0.0273 (18) | 0.046 (2) | 0.0123 (15) | 0.0296 (17) | 0.0072 (15) |
| Ag1 | 0.0547 (3) | 0.0202 (2) | 0.0470 (3) | 0.01195 (18) | 0.01993 (19) | 0.01007 (18) |
| Ag2 | 0.0681 (3) | 0.0223 (2) | 0.0496 (3) | 0.0169 (2) | 0.0257 (2) | 0.01112 (19) |
Geometric parameters (Å, º)
| C1—N1 | 1.315 (5) | C12—C20 | 1.501 (6) |
| C1—C2 | 1.410 (6) | C13—C14 | 1.411 (6) |
| C1—H1 | 0.9300 | C13—H13 | 0.9300 |
| C2—C3 | 1.374 (6) | C14—C19 | 1.416 (6) |
| C2—C10 | 1.495 (6) | C14—C15 | 1.433 (6) |
| C3—C4 | 1.404 (6) | C15—N2 | 1.381 (5) |
| C3—H3 | 0.9300 | C15—C16 | 1.406 (6) |
| C4—C9 | 1.412 (6) | C16—C17 | 1.363 (7) |
| C4—C5 | 1.424 (6) | C16—H16 | 0.9300 |
| C5—N1 | 1.386 (5) | C17—C18 | 1.407 (8) |
| C5—C6 | 1.416 (6) | C17—H17 | 0.9300 |
| C6—C7 | 1.359 (6) | C18—C19 | 1.355 (7) |
| C6—H6 | 0.9300 | C18—H18 | 0.9300 |
| C7—C8 | 1.405 (7) | C19—H19 | 0.9300 |
| C7—H7 | 0.9300 | C20—O3 | 1.245 (5) |
| C8—C9 | 1.361 (7) | C20—O4 | 1.252 (5) |
| C8—H8 | 0.9300 | Ag1—N1 | 2.429 (3) |
| C9—H9 | 0.9300 | Ag1—O2i | 2.219 (3) |
| C10—O1 | 1.246 (5) | Ag1—O4ii | 2.220 (3) |
| C10—O2 | 1.261 (5) | Ag1—Ag2 | 2.9468 (6) |
| C11—N2 | 1.310 (5) | Ag2—N2 | 2.373 (3) |
| C11—C12 | 1.410 (6) | Ag2—O1i | 2.282 (3) |
| C11—H11 | 0.9300 | Ag2—O3ii | 2.258 (3) |
| C12—C13 | 1.364 (6) | Ag2—Ag2iii | 3.3099 (10) |
| N1—C1—C2 | 124.9 (4) | N2—C15—C14 | 120.5 (4) |
| N1—C1—H1 | 117.6 | C16—C15—C14 | 119.4 (4) |
| C2—C1—H1 | 117.6 | C17—C16—C15 | 120.0 (5) |
| C3—C2—C1 | 117.8 (4) | C17—C16—H16 | 120.0 |
| C3—C2—C10 | 123.0 (4) | C15—C16—H16 | 120.0 |
| C1—C2—C10 | 119.2 (4) | C16—C17—C18 | 121.1 (5) |
| C2—C3—C4 | 120.3 (4) | C16—C17—H17 | 119.4 |
| C2—C3—H3 | 119.9 | C18—C17—H17 | 119.4 |
| C4—C3—H3 | 119.9 | C19—C18—C17 | 120.3 (5) |
| C3—C4—C9 | 124.0 (4) | C19—C18—H18 | 119.9 |
| C3—C4—C5 | 117.9 (4) | C17—C18—H18 | 119.9 |
| C9—C4—C5 | 118.1 (4) | C18—C19—C14 | 120.8 (5) |
| N1—C5—C6 | 119.0 (4) | C18—C19—H19 | 119.6 |
| N1—C5—C4 | 121.5 (4) | C14—C19—H19 | 119.6 |
| C6—C5—C4 | 119.5 (4) | O3—C20—O4 | 125.6 (4) |
| C7—C6—C5 | 120.4 (4) | O3—C20—C12 | 118.1 (4) |
| C7—C6—H6 | 119.8 | O4—C20—C12 | 116.2 (4) |
| C5—C6—H6 | 119.8 | C1—N1—C5 | 117.6 (4) |
| C6—C7—C8 | 120.2 (5) | C1—N1—Ag1 | 113.6 (3) |
| C6—C7—H7 | 119.9 | C5—N1—Ag1 | 128.7 (3) |
| C8—C7—H7 | 119.9 | C11—N2—C15 | 118.1 (4) |
| C9—C8—C7 | 120.8 (5) | C11—N2—Ag2 | 115.5 (3) |
| C9—C8—H8 | 119.6 | C15—N2—Ag2 | 125.0 (3) |
| C7—C8—H8 | 119.6 | C10—O1—Ag2ii | 134.4 (3) |
| C8—C9—C4 | 120.9 (4) | C10—O2—Ag1ii | 117.0 (3) |
| C8—C9—H9 | 119.6 | C20—O3—Ag2i | 115.2 (3) |
| C4—C9—H9 | 119.6 | C20—O4—Ag1i | 133.5 (3) |
| O1—C10—O2 | 125.3 (4) | O2i—Ag1—O4ii | 161.54 (11) |
| O1—C10—C2 | 117.1 (4) | O2i—Ag1—N1 | 107.52 (12) |
| O2—C10—C2 | 117.6 (4) | O4ii—Ag1—N1 | 90.23 (12) |
| N2—C11—C12 | 125.2 (4) | O2i—Ag1—Ag2 | 88.38 (8) |
| N2—C11—H11 | 117.4 | O4ii—Ag1—Ag2 | 73.44 (8) |
| C12—C11—H11 | 117.4 | N1—Ag1—Ag2 | 162.81 (9) |
| C13—C12—C11 | 117.9 (4) | O3ii—Ag2—O1i | 157.36 (12) |
| C13—C12—C20 | 123.0 (4) | O3ii—Ag2—N2 | 111.17 (12) |
| C11—C12—C20 | 119.1 (4) | O1i—Ag2—N2 | 90.66 (11) |
| C12—C13—C14 | 119.9 (4) | O3ii—Ag2—Ag1 | 85.21 (8) |
| C12—C13—H13 | 120.1 | O1i—Ag2—Ag1 | 72.49 (8) |
| C14—C13—H13 | 120.1 | N2—Ag2—Ag1 | 162.51 (9) |
| C13—C14—C19 | 123.2 (4) | O3ii—Ag2—Ag2iii | 119.91 (9) |
| C13—C14—C15 | 118.4 (4) | O1i—Ag2—Ag2iii | 58.54 (9) |
| C19—C14—C15 | 118.4 (4) | N2—Ag2—Ag2iii | 100.68 (9) |
| N2—C15—C16 | 120.1 (4) | Ag1—Ag2—Ag2iii | 74.839 (19) |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x+1, −y+1, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2558).
References
- Baenziger, N. C., Fox, C. L. & Modak, S. L. (1986). Acta Cryst. C42, 1505–1509.
- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sun, D., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2010). Cryst. Growth Des. 10, 3699–3709.
- Wei, X.-Y., Chu, W., Huang, R.-D., Zhang, S.-W., Li, H. & Zhu, Q.-L. (2006). Inorg. Chem. Commun. 9, 1161–1164.
- Yang, S.-P., Chen, H.-M., Zhang, F., Chen, Q.-Q. & Yu, X.-B. (2004). Acta Cryst. E60, m614–m616.
- Yeşilel, O. Z., Günay, G. & Büyükgüngör, O. (2011). Polyhedron, 30, 364–371.
- Yilmaz, V. T., Hamamci, S. & Kazak, C. (2008). J. Organomet. Chem. 693, 3885–3888.
- You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1863–m1865.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035209/hy2558sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035209/hy2558Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


