Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 15;68(Pt 9):m1177. doi: 10.1107/S1600536812035209

catena-Poly[disilver(I)(AgAg)-bis­(μ3-quinoline-3-carboxyl­ato)-1:2:1′κ3 O:O′:N;2:1′′:2′′κ3 N:O:O′]

Chun-Bo Liu a,*, Yao Cong a, He-Yi Sun a
PMCID: PMC3435599  PMID: 22969472

Abstract

In the title compound, [Ag2(C10H6NO2)2]n, the AgI atom is coordinated by one N atom and two O atoms from three quinoline-3-carboxyl­ate ligands in a T-shaped fashion, with an additional Ag⋯Ag distance of 2.9468 (6) Å. The ligands connect the AgI atoms into a double-chain structure along [010]. Weak Ag⋯O inter­actions [Ag⋯O = 2.802 (3) and 2.877 (4) Å] link the double-chains into a layer network parallel to (101). π–π inter­actions are also observed in the layer network [centroid–centroid distances = 3.780 (3) and 3.777 (3) Å].

Related literature  

For background to the design and applications of structures with metal-organic frameworks and of AgI complexes, see: Sun et al. (2010); Wei et al. (2006); Yilmaz et al. (2008). For related structures, see: Baenziger et al. (1986); Yang et al. (2004); Yeşiilel et al. (2011); You et al. (2004).graphic file with name e-68-m1177-scheme1.jpg

Experimental  

Crystal data  

  • [Ag2(C10H6NO2)2]

  • M r = 560.06

  • Triclinic, Inline graphic

  • a = 8.0583 (15) Å

  • b = 8.4824 (15) Å

  • c = 12.934 (2) Å

  • α = 93.225 (2)°

  • β = 94.812 (2)°

  • γ = 104.640 (2)°

  • V = 849.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 293 K

  • 0.13 × 0.11 × 0.10 mm

Data collection  

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.745, T max = 0.792

  • 6197 measured reflections

  • 2962 independent reflections

  • 2298 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.081

  • S = 1.01

  • 2962 reflections

  • 253 parameters

  • 168 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035209/hy2558sup1.cif

e-68-m1177-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035209/hy2558Isup2.hkl

e-68-m1177-Isup2.hkl (142.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ag1—N1 2.429 (3)
Ag1—O2i 2.219 (3)
Ag1—O4ii 2.220 (3)
Ag2—N2 2.373 (3)
Ag2—O1i 2.282 (3)
Ag2—O3ii 2.258 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Jiangsu University for supporting this research.

supplementary crystallographic information

Comment

In recent years, the design and synthesis of metal-organic frameworks (MOFs) based on assembly of suitable and rigid building blocks have attracted great attention for their interesting structures and potential applications in catalysis, separation, gas storage and molecular recognition (Wei et al., 2006). Moreover, Ag(I) ion is easy to form short Ag–Ag contacts as well as ligand unsupported interactions, which have been proved to be two of the most important factors contributing to the formation of such complexes and special properties (Yilmaz et al., 2008). Much attention has been paid to Ag(I) ion as its d10 closed-shell electronic configuration. It demonstrates a dynamic range of coordinative geometries, including linear, trigonal-planar, tetrahedral and trigonal-pyramidal. In occasional, it also has examples of square-planar, pyramidal and octahedral geometries, and a tendency to form an argentophilic interaction, both of which may lead to discovery of novel structural motifs (Sun et al., 2010). It is well known that quinoline-3-carboxylic acid (HL) acts as a polyfunctional ligand in metal complexes and coordinates to metals by means of its carboxylate oxygen and a nitrogen atom, exhibiting different coordination modes, such as monodentate-N and monodentate-O, bis(monodentate), bidentate(N, O) and bridging form. In addition, HL also displays an extend π-system, which is beneficial for the formation of π–π interactions to generate high dimensional supramolecular architectures and further stabilize the network. Therefore, we selected silver ion and HL to obtain the title compound under hydrothermal conditions.

In the title compound, the AgI is coordinated by one N atom and two O atoms from three L ligands (Fig. 1, Table 1) and also forms an Ag···Ag contact (Baenziger et al., 1986; Yang et al., 2004). The distance of Ag1···Ag2 is 2.9468 (6) Å. It is shorter than the sum of the van der Waals radii of two silver(I) atoms (3.44 Å), thus the Ag—Ag interaction is found (Yeşilel et al., 2011; You et al., 2004). The bidentate bridging carboxylate group of the ligand connect two Ag atoms and the pyridine N atom links another Ag atom, leading to the formation of a one-dimensional double-chain structure (Fig. 2). The weak Ag···O interactions, with Ag1···O2i and Ag2···O1ii distances of 2.802 (3) and 2.877 (4) Å [symmetry codes: (i) 2-x, -y, 1-z; (ii) 1-x, -y, 1-z], link the double-chains into a layer network. π–π interactions are observed in the layer network [centroid–centroid distances = 3.780 (3) and 3.777 (3) Å].

Experimental

HL was purchased commercially and used without further purification. A mixture of AgCl (14.33 mg, 0.1 mmol) and HL (17.30 mg, 0.1 mmol) was dissolved in a 10 ml of water with pH = 6. The resulting mixture was heated in a 15 ml Teflon-lined autoclave at 438 K for three days. Then the autoclave was slowly cooled to room temperature and colourless block-shaped crystals were obtained in a yield of 50%.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.]

Fig. 2.

Fig. 2.

The one-dimensional double-chain of the title compound. H atoms have been omitted for clarity.

Crystal data

[Ag2(C10H6NO2)2] Z = 2
Mr = 560.06 F(000) = 544
Triclinic, P1 Dx = 2.189 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.0583 (15) Å Cell parameters from 7499 reflections
b = 8.4824 (15) Å θ = 1.6–27.5°
c = 12.934 (2) Å µ = 2.34 mm1
α = 93.225 (2)° T = 293 K
β = 94.812 (2)° Block, colourless
γ = 104.640 (2)° 0.13 × 0.11 × 0.10 mm
V = 849.6 (3) Å3

Data collection

Bruker APEX CCD diffractometer 2962 independent reflections
Radiation source: fine-focus sealed tube 2298 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
φ and ω scans θmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.745, Tmax = 0.792 k = −10→10
6197 measured reflections l = −15→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0428P)2] where P = (Fo2 + 2Fc2)/3
2962 reflections (Δ/σ)max = 0.001
253 parameters Δρmax = 0.51 e Å3
168 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8357 (5) −0.0050 (5) 0.4189 (3) 0.0298 (10)
H1 0.7730 −0.0137 0.4764 0.036*
C2 0.8690 (5) −0.1487 (5) 0.3753 (3) 0.0278 (10)
C3 0.9556 (5) −0.1377 (5) 0.2879 (3) 0.0284 (10)
H3 0.9797 −0.2302 0.2574 0.034*
C4 1.0077 (5) 0.0126 (5) 0.2442 (3) 0.0281 (10)
C5 0.9753 (5) 0.1526 (5) 0.2963 (3) 0.0268 (10)
C6 1.0337 (6) 0.3077 (6) 0.2576 (4) 0.0335 (11)
H6 1.0133 0.3995 0.2916 0.040*
C7 1.1193 (6) 0.3232 (6) 0.1711 (4) 0.0408 (12)
H7 1.1604 0.4260 0.1473 0.049*
C8 1.1461 (6) 0.1846 (6) 0.1173 (4) 0.0413 (12)
H8 1.2010 0.1959 0.0567 0.050*
C9 1.0927 (6) 0.0338 (6) 0.1529 (4) 0.0388 (12)
H9 1.1125 −0.0564 0.1166 0.047*
C10 0.8127 (5) −0.3042 (5) 0.4268 (3) 0.0297 (10)
C11 0.5510 (6) 0.8739 (5) 0.6646 (3) 0.0298 (10)
H11 0.6006 0.8810 0.6021 0.036*
C12 0.5331 (5) 1.0201 (5) 0.7144 (3) 0.0271 (10)
C13 0.4575 (5) 1.0106 (5) 0.8051 (3) 0.0286 (10)
H13 0.4414 1.1043 0.8391 0.034*
C14 0.4036 (6) 0.8582 (6) 0.8472 (3) 0.0309 (10)
C15 0.4289 (5) 0.7163 (5) 0.7920 (4) 0.0298 (10)
C16 0.3802 (6) 0.5640 (6) 0.8339 (4) 0.0391 (12)
H16 0.3952 0.4710 0.7984 0.047*
C17 0.3109 (7) 0.5526 (7) 0.9267 (4) 0.0519 (14)
H17 0.2809 0.4517 0.9544 0.062*
C18 0.2839 (7) 0.6908 (7) 0.9811 (4) 0.0540 (15)
H18 0.2359 0.6804 1.0440 0.065*
C19 0.3277 (6) 0.8391 (6) 0.9421 (4) 0.0413 (12)
H19 0.3075 0.9294 0.9781 0.050*
C20 0.5961 (6) 1.1778 (5) 0.6657 (4) 0.0302 (10)
N1 0.8868 (4) 0.1405 (4) 0.3842 (3) 0.0287 (8)
N2 0.5033 (5) 0.7289 (4) 0.6994 (3) 0.0306 (9)
O1 0.7023 (4) −0.3102 (4) 0.4894 (3) 0.0389 (8)
O2 0.8812 (4) −0.4181 (4) 0.4039 (2) 0.0372 (8)
O3 0.5866 (5) 1.3064 (4) 0.7133 (3) 0.0479 (9)
O4 0.6565 (4) 1.1679 (4) 0.5802 (3) 0.0428 (9)
Ag1 0.79527 (5) 0.35203 (4) 0.48083 (3) 0.03910 (14)
Ag2 0.60900 (5) 0.52274 (4) 0.61650 (3) 0.04425 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.034 (2) 0.027 (2) 0.031 (2) 0.0094 (19) 0.0114 (19) 0.0067 (19)
C2 0.030 (2) 0.025 (2) 0.030 (2) 0.0087 (18) 0.0055 (18) 0.0059 (19)
C3 0.038 (2) 0.022 (2) 0.027 (2) 0.0122 (18) 0.0074 (18) −0.0037 (18)
C4 0.030 (2) 0.027 (2) 0.028 (2) 0.0090 (18) 0.0047 (18) 0.0029 (19)
C5 0.028 (2) 0.027 (2) 0.028 (2) 0.0109 (18) 0.0063 (18) 0.0026 (18)
C6 0.039 (2) 0.023 (2) 0.041 (3) 0.0095 (19) 0.011 (2) 0.009 (2)
C7 0.049 (3) 0.033 (3) 0.043 (3) 0.010 (2) 0.013 (2) 0.014 (2)
C8 0.052 (3) 0.042 (3) 0.034 (2) 0.013 (2) 0.020 (2) 0.008 (2)
C9 0.049 (3) 0.033 (3) 0.039 (3) 0.015 (2) 0.015 (2) 0.004 (2)
C10 0.035 (2) 0.026 (2) 0.028 (2) 0.0075 (19) 0.0043 (19) 0.0004 (19)
C11 0.039 (2) 0.025 (2) 0.028 (2) 0.0107 (19) 0.0117 (19) 0.0057 (19)
C12 0.031 (2) 0.022 (2) 0.031 (2) 0.0085 (18) 0.0056 (18) 0.0040 (19)
C13 0.039 (2) 0.022 (2) 0.028 (2) 0.0117 (19) 0.0066 (18) 0.0001 (18)
C14 0.037 (2) 0.028 (2) 0.030 (2) 0.0104 (19) 0.0079 (19) 0.0065 (19)
C15 0.030 (2) 0.025 (2) 0.036 (2) 0.0079 (18) 0.0079 (19) 0.0067 (19)
C16 0.053 (3) 0.027 (2) 0.039 (3) 0.011 (2) 0.014 (2) 0.006 (2)
C17 0.069 (3) 0.040 (3) 0.050 (3) 0.012 (2) 0.019 (3) 0.017 (2)
C18 0.067 (3) 0.053 (3) 0.045 (3) 0.014 (3) 0.029 (3) 0.014 (3)
C19 0.053 (3) 0.037 (3) 0.036 (3) 0.013 (2) 0.013 (2) 0.004 (2)
C20 0.038 (2) 0.021 (2) 0.034 (2) 0.0117 (19) 0.008 (2) 0.0045 (19)
N1 0.0348 (19) 0.021 (2) 0.031 (2) 0.0072 (16) 0.0088 (16) 0.0006 (16)
N2 0.042 (2) 0.023 (2) 0.031 (2) 0.0113 (16) 0.0147 (17) 0.0053 (16)
O1 0.0514 (19) 0.0296 (18) 0.0437 (19) 0.0174 (15) 0.0238 (16) 0.0104 (15)
O2 0.0490 (18) 0.0205 (17) 0.0459 (19) 0.0114 (14) 0.0182 (16) 0.0036 (15)
O3 0.078 (2) 0.0253 (18) 0.046 (2) 0.0173 (17) 0.0210 (18) 0.0058 (16)
O4 0.061 (2) 0.0273 (18) 0.046 (2) 0.0123 (15) 0.0296 (17) 0.0072 (15)
Ag1 0.0547 (3) 0.0202 (2) 0.0470 (3) 0.01195 (18) 0.01993 (19) 0.01007 (18)
Ag2 0.0681 (3) 0.0223 (2) 0.0496 (3) 0.0169 (2) 0.0257 (2) 0.01112 (19)

Geometric parameters (Å, º)

C1—N1 1.315 (5) C12—C20 1.501 (6)
C1—C2 1.410 (6) C13—C14 1.411 (6)
C1—H1 0.9300 C13—H13 0.9300
C2—C3 1.374 (6) C14—C19 1.416 (6)
C2—C10 1.495 (6) C14—C15 1.433 (6)
C3—C4 1.404 (6) C15—N2 1.381 (5)
C3—H3 0.9300 C15—C16 1.406 (6)
C4—C9 1.412 (6) C16—C17 1.363 (7)
C4—C5 1.424 (6) C16—H16 0.9300
C5—N1 1.386 (5) C17—C18 1.407 (8)
C5—C6 1.416 (6) C17—H17 0.9300
C6—C7 1.359 (6) C18—C19 1.355 (7)
C6—H6 0.9300 C18—H18 0.9300
C7—C8 1.405 (7) C19—H19 0.9300
C7—H7 0.9300 C20—O3 1.245 (5)
C8—C9 1.361 (7) C20—O4 1.252 (5)
C8—H8 0.9300 Ag1—N1 2.429 (3)
C9—H9 0.9300 Ag1—O2i 2.219 (3)
C10—O1 1.246 (5) Ag1—O4ii 2.220 (3)
C10—O2 1.261 (5) Ag1—Ag2 2.9468 (6)
C11—N2 1.310 (5) Ag2—N2 2.373 (3)
C11—C12 1.410 (6) Ag2—O1i 2.282 (3)
C11—H11 0.9300 Ag2—O3ii 2.258 (3)
C12—C13 1.364 (6) Ag2—Ag2iii 3.3099 (10)
N1—C1—C2 124.9 (4) N2—C15—C14 120.5 (4)
N1—C1—H1 117.6 C16—C15—C14 119.4 (4)
C2—C1—H1 117.6 C17—C16—C15 120.0 (5)
C3—C2—C1 117.8 (4) C17—C16—H16 120.0
C3—C2—C10 123.0 (4) C15—C16—H16 120.0
C1—C2—C10 119.2 (4) C16—C17—C18 121.1 (5)
C2—C3—C4 120.3 (4) C16—C17—H17 119.4
C2—C3—H3 119.9 C18—C17—H17 119.4
C4—C3—H3 119.9 C19—C18—C17 120.3 (5)
C3—C4—C9 124.0 (4) C19—C18—H18 119.9
C3—C4—C5 117.9 (4) C17—C18—H18 119.9
C9—C4—C5 118.1 (4) C18—C19—C14 120.8 (5)
N1—C5—C6 119.0 (4) C18—C19—H19 119.6
N1—C5—C4 121.5 (4) C14—C19—H19 119.6
C6—C5—C4 119.5 (4) O3—C20—O4 125.6 (4)
C7—C6—C5 120.4 (4) O3—C20—C12 118.1 (4)
C7—C6—H6 119.8 O4—C20—C12 116.2 (4)
C5—C6—H6 119.8 C1—N1—C5 117.6 (4)
C6—C7—C8 120.2 (5) C1—N1—Ag1 113.6 (3)
C6—C7—H7 119.9 C5—N1—Ag1 128.7 (3)
C8—C7—H7 119.9 C11—N2—C15 118.1 (4)
C9—C8—C7 120.8 (5) C11—N2—Ag2 115.5 (3)
C9—C8—H8 119.6 C15—N2—Ag2 125.0 (3)
C7—C8—H8 119.6 C10—O1—Ag2ii 134.4 (3)
C8—C9—C4 120.9 (4) C10—O2—Ag1ii 117.0 (3)
C8—C9—H9 119.6 C20—O3—Ag2i 115.2 (3)
C4—C9—H9 119.6 C20—O4—Ag1i 133.5 (3)
O1—C10—O2 125.3 (4) O2i—Ag1—O4ii 161.54 (11)
O1—C10—C2 117.1 (4) O2i—Ag1—N1 107.52 (12)
O2—C10—C2 117.6 (4) O4ii—Ag1—N1 90.23 (12)
N2—C11—C12 125.2 (4) O2i—Ag1—Ag2 88.38 (8)
N2—C11—H11 117.4 O4ii—Ag1—Ag2 73.44 (8)
C12—C11—H11 117.4 N1—Ag1—Ag2 162.81 (9)
C13—C12—C11 117.9 (4) O3ii—Ag2—O1i 157.36 (12)
C13—C12—C20 123.0 (4) O3ii—Ag2—N2 111.17 (12)
C11—C12—C20 119.1 (4) O1i—Ag2—N2 90.66 (11)
C12—C13—C14 119.9 (4) O3ii—Ag2—Ag1 85.21 (8)
C12—C13—H13 120.1 O1i—Ag2—Ag1 72.49 (8)
C14—C13—H13 120.1 N2—Ag2—Ag1 162.51 (9)
C13—C14—C19 123.2 (4) O3ii—Ag2—Ag2iii 119.91 (9)
C13—C14—C15 118.4 (4) O1i—Ag2—Ag2iii 58.54 (9)
C19—C14—C15 118.4 (4) N2—Ag2—Ag2iii 100.68 (9)
N2—C15—C16 120.1 (4) Ag1—Ag2—Ag2iii 74.839 (19)

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2558).

References

  1. Baenziger, N. C., Fox, C. L. & Modak, S. L. (1986). Acta Cryst. C42, 1505–1509.
  2. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sun, D., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2010). Cryst. Growth Des. 10, 3699–3709.
  7. Wei, X.-Y., Chu, W., Huang, R.-D., Zhang, S.-W., Li, H. & Zhu, Q.-L. (2006). Inorg. Chem. Commun. 9, 1161–1164.
  8. Yang, S.-P., Chen, H.-M., Zhang, F., Chen, Q.-Q. & Yu, X.-B. (2004). Acta Cryst. E60, m614–m616.
  9. Yeşilel, O. Z., Günay, G. & Büyükgüngör, O. (2011). Polyhedron, 30, 364–371.
  10. Yilmaz, V. T., Hamamci, S. & Kazak, C. (2008). J. Organomet. Chem. 693, 3885–3888.
  11. You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1863–m1865.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035209/hy2558sup1.cif

e-68-m1177-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035209/hy2558Isup2.hkl

e-68-m1177-Isup2.hkl (142.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES