Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 23;68(Pt 9):m1180. doi: 10.1107/S1600536812035386

(Cyanato-κN){1-[(E)-phen­yl(pyridin-2-yl-κN)methyl­idene]semicarbazidato-κ2 N 1,O}copper(II)

Roji J Kunnath a, MR Prathapachandra Kurup a, Seik Weng Ng b,c,*
PMCID: PMC3435602  PMID: 22969475

Abstract

The CuII atom in the title compound, [Cu(C13H11N4O)(NCO)], is N,N′,O-chelated by the mono-deprotonated Schiff base ligand and it is also covalently bonded to the nitro­gen end of the cyanate ion. The CuII atom shows a square-planar coordination that is distorted towards square-pyramidal owing to an inter­molecular Cu⋯Ncyanate inter­action [2.623 (2) Å], which gives a centrosymmetric dimer. In the square-planar description, the CuII atom is displaced out of the square plane [r.m.s. deviation = 0.048 Å] by 0.084 (1) Å in the direction of the apical occupant. In the crystal, adjacent complex dimers are linked by an amine N—H⋯N hydrogen-bond pair, also giving a centrosymmetric cyclic association [graph set R 2 2(8)], generating a linear chain parallel to [110].

Related literature  

For the synthesis of the Schiff base, see: de Lima et al. (2008). For a related copper(II) derivative, see: Peŕez-Rebolledo et al. (2006). For graph-set notation, see: Etter et al. (1990).graphic file with name e-68-m1180-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C13H11N4O)(NCO)]

  • M r = 344.82

  • Monoclinic, Inline graphic

  • a = 8.7601 (1) Å

  • b = 7.6732 (1) Å

  • c = 20.0819 (3) Å

  • β = 96.7467 (7)°

  • V = 1340.52 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.638, T max = 0.735

  • 11886 measured reflections

  • 3069 independent reflections

  • 2728 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.093

  • S = 1.03

  • 3069 reflections

  • 208 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035386/zs2226sup1.cif

e-68-m1180-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035386/zs2226Isup2.hkl

e-68-m1180-Isup2.hkl (150.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H41⋯N3i 0.88 (1) 2.27 (1) 3.139 (2) 173 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

RJK thanks the University Grants Commission (India) for a Junior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

supplementary crystallographic information

Comment

2-Benzoylpyridine semicarbazone (de Lima et al., 2008) is a Schiff base that is capable of N,N',O-chelation to transition metal ions. This feature has been documented in a copper(II) dichloride adduct in which the Schiff base exists as a neutral molecule (Peŕez-Rebolledo et al., 2006). However, the CuII atom in the title compound [Cu(NCO)(C13H11N4O)] (Scheme I) is N,N',O-chelated by the mono-deprotonated Schiff base ligand and it is also covalently bonded to the nitrogen end of the cyanate ion. The metal center shows square-planar coordination that is distorted towards square-pyramidal coordination owing to an intermolecular Cu···Ncyanate interaction [2.623 (2) Å], which generates a centrosymmetric dimer (Fig. 1). The geometry is better interpreted as square planar as the Cu···Ncyanate···Cu angle is too acute [93.0 (1)°].

Adjacent dimers are linked by an amine N—H···N hydrogen-bond pair (Table 1), also giving a centrosymmetric cyclic association [graph set R22(8) (Etter et al., 1990], generating a linear chain parallel to [1 1 0].

Experimental

A methanol solution (20 ml) of 2-benzoylpyridine semicarbazone (0.240 g, 1 mmol) (de Lima et al., 2008), copper sulfate pentahydrate (0.249 g, 1 mmol) and sodium cyanate (0.065 g, 1 mmol) was heated for 5 h. The dark green solid was collected and recrystallized from methanol.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å and their displacement parameters refined. Only one H-atom is involved in the formation of a hydrogen bond.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of two molecules of [Cu(NCO)(C13H11N4O)] that are linked by Cu···Ncyanate interactions (dashed bonds), at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Cu(C13H11N4O)(NCO)] F(000) = 700
Mr = 344.82 Dx = 1.709 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 838 reflections
a = 8.7601 (1) Å θ = 2.4–28.3°
b = 7.6732 (1) Å µ = 1.64 mm1
c = 20.0819 (3) Å T = 293 K
β = 96.7467 (7)° Prism, dark green
V = 1340.52 (3) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer 3069 independent reflections
Radiation source: fine-focus sealed tube 2728 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
ω scans θmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→11
Tmin = 0.638, Tmax = 0.735 k = −9→9
11886 measured reflections l = −26→26

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.5121P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3069 reflections Δρmax = 0.37 e Å3
208 parameters Δρmin = −0.47 e Å3
2 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0221 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.31070 (2) 0.50325 (3) 0.506177 (10) 0.03203 (12)
O1 0.28257 (17) 0.3049 (2) 0.56285 (6) 0.0473 (4)
O2 0.5831 (2) 0.6387 (3) 0.67349 (8) 0.0696 (6)
N1 0.26412 (17) 0.6848 (2) 0.43675 (7) 0.0323 (3)
N2 0.13987 (16) 0.38948 (19) 0.45304 (7) 0.0287 (3)
N3 0.09476 (17) 0.2331 (2) 0.47511 (7) 0.0332 (3)
N4 0.1503 (3) 0.0571 (3) 0.56674 (9) 0.0526 (5)
H41 0.078 (2) −0.018 (3) 0.5525 (15) 0.057 (8)*
H42 0.196 (3) 0.034 (4) 0.6065 (8) 0.059 (8)*
N5 0.47729 (18) 0.6213 (2) 0.56268 (8) 0.0391 (4)
C1 0.3226 (2) 0.8437 (3) 0.43590 (10) 0.0425 (4)
H1 0.3972 0.8773 0.4703 0.051*
C2 0.2763 (3) 0.9611 (3) 0.38550 (13) 0.0480 (5)
H2 0.3178 1.0727 0.3862 0.058*
C3 0.1682 (2) 0.9104 (3) 0.33440 (11) 0.0448 (5)
H3 0.1354 0.9875 0.2999 0.054*
C4 0.1084 (2) 0.7441 (3) 0.33435 (9) 0.0383 (4)
H4 0.0364 0.7071 0.2995 0.046*
C5 0.15699 (19) 0.6327 (2) 0.38691 (8) 0.0299 (3)
C6 0.09472 (19) 0.4563 (3) 0.39498 (8) 0.0289 (3)
C7 −0.00451 (19) 0.3697 (2) 0.34034 (8) 0.0295 (3)
C8 0.0435 (2) 0.3596 (3) 0.27703 (9) 0.0373 (4)
H8 0.1360 0.4106 0.2691 0.045*
C9 −0.0453 (2) 0.2744 (3) 0.22558 (9) 0.0438 (5)
H9 −0.0119 0.2674 0.1834 0.053*
C10 −0.1826 (2) 0.2003 (3) 0.23667 (10) 0.0453 (5)
H10 −0.2419 0.1424 0.2021 0.054*
C11 −0.2324 (2) 0.2114 (3) 0.29881 (11) 0.0438 (5)
H11 −0.3263 0.1626 0.3060 0.053*
C12 −0.1440 (2) 0.2947 (3) 0.35081 (9) 0.0351 (4)
H12 −0.1779 0.3006 0.3929 0.042*
C13 0.1784 (2) 0.2042 (3) 0.53522 (8) 0.0369 (4)
C14 0.5253 (2) 0.6252 (3) 0.61718 (10) 0.0396 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.03601 (17) 0.03610 (18) 0.02273 (15) −0.00921 (8) −0.00184 (10) −0.00184 (7)
O1 0.0603 (9) 0.0532 (9) 0.0253 (6) −0.0211 (7) −0.0086 (6) 0.0083 (6)
O2 0.0639 (10) 0.1105 (17) 0.0313 (7) −0.0030 (10) −0.0079 (7) −0.0060 (9)
N1 0.0361 (7) 0.0323 (8) 0.0282 (7) −0.0055 (6) 0.0017 (6) −0.0025 (6)
N2 0.0310 (7) 0.0321 (7) 0.0227 (6) −0.0053 (6) 0.0020 (5) −0.0012 (5)
N3 0.0399 (7) 0.0341 (8) 0.0250 (6) −0.0089 (6) 0.0013 (6) 0.0017 (6)
N4 0.0713 (13) 0.0508 (11) 0.0329 (9) −0.0212 (10) −0.0060 (8) 0.0121 (8)
N5 0.0370 (8) 0.0480 (10) 0.0316 (8) −0.0072 (7) 0.0011 (6) −0.0007 (7)
C1 0.0503 (11) 0.0374 (10) 0.0396 (10) −0.0124 (8) 0.0041 (8) −0.0064 (8)
C2 0.0609 (13) 0.0314 (9) 0.0536 (13) −0.0093 (10) 0.0149 (10) 0.0014 (9)
C3 0.0528 (11) 0.0375 (11) 0.0452 (11) 0.0039 (9) 0.0104 (9) 0.0092 (9)
C4 0.0400 (9) 0.0381 (10) 0.0358 (9) 0.0018 (8) −0.0002 (7) 0.0037 (8)
C5 0.0295 (7) 0.0314 (9) 0.0288 (7) −0.0007 (6) 0.0034 (6) −0.0017 (6)
C6 0.0270 (7) 0.0332 (8) 0.0261 (8) −0.0013 (7) 0.0014 (6) −0.0013 (7)
C7 0.0296 (7) 0.0297 (8) 0.0273 (7) −0.0003 (6) −0.0041 (6) 0.0010 (6)
C8 0.0344 (9) 0.0473 (11) 0.0295 (8) −0.0053 (8) 0.0008 (7) −0.0012 (8)
C9 0.0500 (11) 0.0512 (12) 0.0285 (8) 0.0002 (9) −0.0031 (8) −0.0051 (8)
C10 0.0465 (11) 0.0454 (12) 0.0396 (10) −0.0040 (9) −0.0142 (8) −0.0070 (8)
C11 0.0317 (9) 0.0455 (11) 0.0515 (11) −0.0083 (8) −0.0062 (8) 0.0002 (9)
C12 0.0309 (8) 0.0368 (10) 0.0368 (9) −0.0022 (7) 0.0013 (7) 0.0002 (7)
C13 0.0456 (10) 0.0403 (10) 0.0247 (8) −0.0078 (8) 0.0039 (7) 0.0023 (7)
C14 0.0350 (9) 0.0442 (11) 0.0398 (10) −0.0061 (8) 0.0060 (7) −0.0032 (8)

Geometric parameters (Å, º)

Cu1—O1 1.9335 (14) C2—H2 0.9300
Cu1—N2 1.9404 (14) C3—C4 1.379 (3)
Cu1—N5 1.9618 (16) C3—H3 0.9300
Cu1—N1 1.9790 (15) C4—C5 1.385 (2)
Cu1—N5i 2.6225 (17) C4—H4 0.9300
O1—C13 1.272 (2) C5—C6 1.475 (2)
O2—C14 1.188 (2) C6—C7 1.475 (2)
N1—C1 1.324 (2) C7—C8 1.388 (2)
N1—C5 1.349 (2) C7—C12 1.388 (2)
N2—C6 1.293 (2) C8—C9 1.382 (3)
N2—N3 1.354 (2) C8—H8 0.9300
N3—C13 1.355 (2) C9—C10 1.372 (3)
N4—C13 1.331 (3) C9—H9 0.9300
N4—H41 0.876 (10) C10—C11 1.372 (3)
N4—H42 0.869 (10) C10—H10 0.9300
N5—C14 1.126 (2) C11—C12 1.382 (3)
C1—C2 1.380 (3) C11—H11 0.9300
C1—H1 0.9300 C12—H12 0.9300
C2—C3 1.368 (3)
O1—Cu1—N2 79.99 (6) C3—C4—C5 119.16 (18)
O1—Cu1—N5 99.25 (6) C3—C4—H4 120.4
N2—Cu1—N5 177.52 (6) C5—C4—H4 120.4
O1—Cu1—N1 159.83 (6) N1—C5—C4 120.48 (17)
N2—Cu1—N1 81.22 (6) N1—C5—C6 115.08 (15)
N5—Cu1—N1 99.23 (7) C4—C5—C6 124.40 (16)
O1—Cu1—N5i 99.82 (6) N2—C6—C7 125.67 (17)
N2—Cu1—N5i 95.41 (6) N2—C6—C5 112.66 (15)
N5—Cu1—N5i 87.05 (6) C7—C6—C5 121.65 (15)
N1—Cu1—N5i 89.15 (6) C8—C7—C12 118.85 (16)
C13—O1—Cu1 110.84 (11) C8—C7—C6 119.40 (16)
C1—N1—C5 119.97 (16) C12—C7—C6 121.74 (16)
C1—N1—Cu1 127.54 (13) C9—C8—C7 120.43 (18)
C5—N1—Cu1 112.47 (12) C9—C8—H8 119.8
C6—N2—N3 125.23 (14) C7—C8—H8 119.8
C6—N2—Cu1 116.88 (12) C10—C9—C8 120.13 (19)
N3—N2—Cu1 117.03 (10) C10—C9—H9 119.9
N2—N3—C13 106.76 (14) C8—C9—H9 119.9
C13—N4—H41 124 (2) C9—C10—C11 120.02 (17)
C13—N4—H42 121 (2) C9—C10—H10 120.0
H41—N4—H42 114 (3) C11—C10—H10 120.0
C14—N5—Cu1 137.89 (16) C10—C11—C12 120.38 (18)
N1—C1—C2 121.99 (19) C10—C11—H11 119.8
N1—C1—H1 119.0 C12—C11—H11 119.8
C2—C1—H1 119.0 C11—C12—C7 120.18 (18)
C3—C2—C1 118.8 (2) C11—C12—H12 119.9
C3—C2—H2 120.6 C7—C12—H12 119.9
C1—C2—H2 120.6 O1—C13—N4 118.09 (17)
C2—C3—C4 119.53 (19) O1—C13—N3 125.08 (17)
C2—C3—H3 120.2 N4—C13—N3 116.82 (17)
C4—C3—H3 120.2 N5—C14—O2 175.1 (2)
N2—Cu1—O1—C13 3.55 (14) Cu1—N1—C5—C4 179.09 (14)
N5—Cu1—O1—C13 −178.85 (14) C1—N1—C5—C6 −177.08 (16)
N1—Cu1—O1—C13 25.1 (3) Cu1—N1—C5—C6 1.45 (19)
N5i—Cu1—O1—C13 −90.27 (14) C3—C4—C5—N1 −1.5 (3)
O1—Cu1—N1—C1 150.16 (19) C3—C4—C5—C6 175.87 (18)
N2—Cu1—N1—C1 171.58 (18) N3—N2—C6—C7 −4.9 (3)
N5—Cu1—N1—C1 −5.94 (18) Cu1—N2—C6—C7 164.10 (13)
N5i—Cu1—N1—C1 −92.81 (17) N3—N2—C6—C5 176.72 (15)
O1—Cu1—N1—C5 −28.2 (3) Cu1—N2—C6—C5 −14.28 (19)
N2—Cu1—N1—C5 −6.80 (12) N1—C5—C6—N2 8.2 (2)
N5—Cu1—N1—C5 175.67 (12) C4—C5—C6—N2 −169.37 (17)
N5i—Cu1—N1—C5 88.80 (12) N1—C5—C6—C7 −170.28 (15)
O1—Cu1—N2—C6 −175.17 (14) C4—C5—C6—C7 12.2 (3)
N1—Cu1—N2—C6 12.18 (13) N2—C6—C7—C8 −126.9 (2)
N5i—Cu1—N2—C6 −76.12 (14) C5—C6—C7—C8 51.4 (2)
O1—Cu1—N2—N3 −5.25 (12) N2—C6—C7—C12 51.9 (3)
N1—Cu1—N2—N3 −177.90 (13) C5—C6—C7—C12 −129.86 (18)
N5i—Cu1—N2—N3 93.80 (12) C12—C7—C8—C9 −0.8 (3)
C6—N2—N3—C13 174.42 (17) C6—C7—C8—C9 178.00 (19)
Cu1—N2—N3—C13 5.43 (18) C7—C8—C9—C10 0.5 (3)
O1—Cu1—N5—C14 −22.4 (3) C8—C9—C10—C11 0.4 (3)
N1—Cu1—N5—C14 149.4 (2) C9—C10—C11—C12 −1.0 (3)
N5i—Cu1—N5—C14 −121.9 (3) C10—C11—C12—C7 0.8 (3)
C5—N1—C1—C2 0.7 (3) C8—C7—C12—C11 0.2 (3)
Cu1—N1—C1—C2 −177.57 (16) C6—C7—C12—C11 −178.62 (18)
N1—C1—C2—C3 −1.0 (3) Cu1—O1—C13—N4 176.97 (17)
C1—C2—C3—C4 0.0 (3) Cu1—O1—C13—N3 −1.7 (3)
C2—C3—C4—C5 1.3 (3) N2—N3—C13—O1 −2.4 (3)
C1—N1—C5—C4 0.6 (3) N2—N3—C13—N4 178.93 (19)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H41···N3ii 0.88 (1) 2.27 (1) 3.139 (2) 173 (3)

Symmetry code: (ii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2226).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  4. Lima, D. F. de, Pérez-Rebolledo, A., Ellena, J. & Beraldo, H. (2008). Acta Cryst. E64, o177. [DOI] [PMC free article] [PubMed]
  5. Peŕez-Rebolledo, A., Piro, O. E., Castellano, E. E., Teixeira, L. R., Batista, A. A. & Beraldo, H. (2006). J. Mol. Struct. 794, 18–23.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035386/zs2226sup1.cif

e-68-m1180-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035386/zs2226Isup2.hkl

e-68-m1180-Isup2.hkl (150.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES