Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 23;68(Pt 9):m1182–m1183. doi: 10.1107/S1600536812035428

Diaqua­bis­{3-[4-(1H-imidazol-1-yl)phenyl]-5-(pyridin-2-yl-κN)-1H-1,2,4-triazol-1-ido-κN 1}zinc

You-Song Wang a, Guang-Mei Qiu a, Cui-Juan Wang a,*
PMCID: PMC3435604  PMID: 22969477

Abstract

The centrosymmetric mol­ecule of the title compound, [Zn(C16H11N6)2(H2O)2], contains one Zn2+ ion located on a center of symmetry, two 3-[4-(1H-imidazol-1-yl)phen­yl]-5-(pyridin-2-yl)-1H-1,2,4-triazol-1-ide (Ippyt) ligands and two coordinating water mol­ecules. The ZnII ion is six-coordinated in a distorted octa­hedral coordination geometry by four N atoms from two Ippyt ligands and by two O atoms from two water mol­ecules. Adjacent units are inter­connected though O—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature  

For similar structures, see: Braga et al. (2005); Lin et al. (2010); Faulmann et al. (1990); Han et al. (2005); Xue et al. (2009).graphic file with name e-68-m1182-scheme1.jpg

Experimental  

Crystal data  

  • [Zn(C16H11N6)2(H2O)2]

  • M r = 676.04

  • Monoclinic, Inline graphic

  • a = 12.6481 (9) Å

  • b = 11.6659 (6) Å

  • c = 10.4922 (7) Å

  • β = 105.891 (7)°

  • V = 1488.98 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 293 K

  • 0.03 × 0.03 × 0.02 mm

Data collection  

  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.974, T max = 0.983

  • 4938 measured reflections

  • 2626 independent reflections

  • 1724 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.109

  • S = 1.02

  • 2626 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035428/br2206sup1.cif

e-68-m1182-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035428/br2206Isup2.hkl

e-68-m1182-Isup2.hkl (129KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N6i 0.82 2.03 2.842 (4) 174
O1—H1B⋯N4ii 0.85 2.07 2.868 (4) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities, P. R. China (No. SWJTU12CX048).

supplementary crystallographic information

Comment

The rational design and syntheses of metal-organic frameworks have been of increasing interest in the crystal engineering of coordination polymers owing to their ability to provide diverse assemblies with fascinating topological structures and material properties ( Han et al., 2005; Xue et al.,2009). The centrosymmetric unit of the title compound contains one Zn2+ion, two Ippyt ligands and two coordination water molecules. For a similar structure, see: Braga et al. (2005); Lin et al. (2010); Faulmann et al. (1990). Every ZnII ion is six-coordinated in a distorted octahedral coordination geometry by four N atoms from two Ippyt ligands and by two O atoms from two coordination water molecules (Fig. 1). There are two kinds of hydrogen bonding interactions which are between the coordinated waters and the triazolyl nitrogen atoms, and between the coordinated waters and the imidazolyl nitrogen atoms, respectively. However, the construct units are connected by the hydrogen bonding interactions between oxygen/ imidazolyl nitrogen atoms and imidazolyl nitrogen/ oxygen atoms from adjacent units respectively. Thus, infinite one-dimensional ring-shaped chains are formed. And then N3 and N3' are further involved in forming another hydrogen bonding interactions with other neighbouring water oxygen atoms and thus connect the 1D supramolecular chains together to form the two-dimensional supramolecular architecture in the a,c plane. And finally the structures are interlinked alternately by different hydrogen bonding interactions and finally result in the three-dimensional supramolecular network architectures.(Fig.2).

Experimental

A mixture of Zn(NO3)2.6H2O (0.02 mmol), Ippyt (0.02 mmol), H2O (8 ml) was sealed in 25ml Teflon-lined stainless steel reactor, which was heated to 413 K for 5d and was subsequently cooled slowly to room temperature. Colourless block-shaped crystals were collected in 47% yield based on Zn.

Refinement

All H atoms were positioned geometrically (C-H = 0.93Åand O-H = 0.82 Å) and allowed to ride on their parent atoms, with Uiso(H) values equal to 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The coordination environment of ZnII atom in the title compound.

Fig. 2.

Fig. 2.

The 3D supermolecule network of the title compound. Dashed lines denote hydrogen bonds.

Crystal data

[Zn(C16H11N6)2(H2O)2] F(000) = 700
Mr = 676.04 Dx = 1.512 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1141 reflections
a = 12.6481 (9) Å θ = 2.4–28.3°
b = 11.6659 (6) Å µ = 0.88 mm1
c = 10.4922 (7) Å T = 293 K
β = 105.891 (7)° Block, colourless
V = 1488.98 (16) Å3 0.03 × 0.03 × 0.02 mm
Z = 2

Data collection

Bruker SMART diffractometer 2626 independent reflections
Radiation source: fine-focus sealed tube 1724 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
φ and ω scans θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→8
Tmin = 0.974, Tmax = 0.983 k = −12→13
4938 measured reflections l = −8→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0332P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02
2626 reflections Δρmax = 0.23 e Å3
214 parameters Δρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.5000 0.0000 0.5000 0.0451 (2)
N1 0.4454 (2) 0.1728 (2) 0.4816 (3) 0.0390 (8)
N2 0.6022 (2) 0.0728 (2) 0.6718 (3) 0.0391 (8)
N3 0.6852 (2) 0.0414 (3) 0.7797 (3) 0.0441 (8)
N4 0.6357 (2) 0.2248 (2) 0.8079 (3) 0.0385 (8)
N5 1.0281 (2) 0.1265 (3) 1.3567 (3) 0.0553 (9)
N6 1.1782 (3) 0.0806 (3) 1.5144 (4) 0.0726 (12)
O1 0.62155 (17) 0.04131 (19) 0.3861 (3) 0.0481 (7)
H1B 0.6317 0.1134 0.3870 0.058*
H1 0.6799 0.0087 0.4200 0.072*
C1 0.3757 (3) 0.2195 (3) 0.3764 (4) 0.0469 (10)
H1A 0.3432 0.1729 0.3045 0.056*
C2 0.3496 (3) 0.3348 (3) 0.3698 (4) 0.0516 (11)
H2 0.3024 0.3661 0.2938 0.062*
C3 0.3952 (3) 0.4012 (3) 0.4776 (4) 0.0545 (11)
H3 0.3769 0.4784 0.4767 0.065*
C4 0.4682 (3) 0.3549 (3) 0.5884 (4) 0.0474 (10)
H4 0.4994 0.4000 0.6623 0.057*
C5 0.4938 (2) 0.2399 (3) 0.5865 (4) 0.0344 (8)
C6 0.5757 (3) 0.1811 (3) 0.6919 (4) 0.0347 (8)
C7 0.7019 (3) 0.1340 (3) 0.8583 (4) 0.0378 (9)
C8 0.7859 (3) 0.1342 (3) 0.9879 (4) 0.0393 (9)
C9 0.7952 (3) 0.2227 (3) 1.0774 (4) 0.0468 (10)
H9 0.7472 0.2846 1.0566 0.056*
C10 0.8756 (3) 0.2204 (3) 1.1987 (4) 0.0510 (11)
H10 0.8815 0.2811 1.2578 0.061*
C11 0.9465 (3) 0.1283 (3) 1.2313 (4) 0.0464 (10)
C12 0.9361 (3) 0.0383 (4) 1.1451 (5) 0.0595 (12)
H12 0.9823 −0.0249 1.1676 0.071*
C13 0.8562 (3) 0.0414 (3) 1.0237 (4) 0.0559 (11)
H13 0.8500 −0.0199 0.9655 0.067*
C14 1.0221 (4) 0.1771 (6) 1.4698 (5) 0.113 (2)
H14 0.9652 0.2232 1.4806 0.136*
C15 1.1136 (4) 0.1485 (5) 1.5641 (5) 0.114 (2)
H15 1.1299 0.1725 1.6519 0.137*
C16 1.1249 (3) 0.0693 (4) 1.3884 (5) 0.0675 (13)
H16 1.1507 0.0269 1.3280 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0514 (4) 0.0329 (3) 0.0373 (4) 0.0044 (3) −0.0112 (3) −0.0042 (4)
N1 0.0353 (16) 0.0368 (18) 0.037 (2) 0.0012 (14) −0.0030 (14) 0.0003 (16)
N2 0.0400 (17) 0.0332 (17) 0.0352 (19) 0.0010 (13) −0.0049 (14) −0.0039 (15)
N3 0.0469 (18) 0.0380 (18) 0.036 (2) 0.0023 (14) −0.0069 (15) −0.0009 (17)
N4 0.0367 (16) 0.0354 (17) 0.0371 (19) 0.0015 (13) −0.0005 (14) −0.0029 (16)
N5 0.0367 (18) 0.082 (2) 0.040 (2) 0.0157 (17) −0.0026 (15) −0.002 (2)
N6 0.049 (2) 0.097 (3) 0.056 (3) 0.018 (2) −0.0124 (19) 0.001 (3)
O1 0.0452 (14) 0.0400 (14) 0.0496 (18) 0.0068 (11) −0.0032 (12) 0.0066 (14)
C1 0.048 (2) 0.048 (3) 0.033 (2) 0.0015 (18) −0.0066 (18) −0.001 (2)
C2 0.052 (2) 0.045 (2) 0.045 (3) 0.0087 (19) −0.008 (2) 0.005 (2)
C3 0.059 (3) 0.038 (2) 0.056 (3) 0.0133 (19) −0.002 (2) 0.000 (2)
C4 0.052 (2) 0.037 (2) 0.043 (3) 0.0054 (18) −0.0035 (19) −0.008 (2)
C5 0.0328 (19) 0.034 (2) 0.033 (2) 0.0002 (15) 0.0020 (16) 0.0004 (19)
C6 0.038 (2) 0.033 (2) 0.032 (2) −0.0027 (16) 0.0065 (16) −0.0031 (18)
C7 0.035 (2) 0.040 (2) 0.034 (2) −0.0052 (16) 0.0028 (16) −0.001 (2)
C8 0.034 (2) 0.042 (2) 0.036 (2) 0.0027 (16) 0.0006 (17) 0.002 (2)
C9 0.044 (2) 0.050 (2) 0.041 (3) 0.0092 (18) 0.0016 (18) −0.003 (2)
C10 0.047 (2) 0.060 (3) 0.039 (2) 0.008 (2) −0.0003 (19) −0.015 (2)
C11 0.040 (2) 0.057 (3) 0.035 (2) 0.0064 (19) −0.0021 (17) 0.001 (2)
C12 0.053 (3) 0.057 (3) 0.055 (3) 0.020 (2) −0.007 (2) −0.003 (3)
C13 0.056 (2) 0.050 (2) 0.051 (3) 0.009 (2) −0.003 (2) −0.010 (2)
C14 0.078 (4) 0.202 (7) 0.045 (3) 0.071 (4) −0.008 (3) −0.024 (4)
C15 0.074 (4) 0.209 (7) 0.041 (3) 0.057 (4) −0.015 (3) −0.018 (4)
C16 0.054 (3) 0.075 (3) 0.059 (3) 0.017 (2) −0.009 (2) −0.005 (3)

Geometric parameters (Å, º)

Zn1—N2i 2.090 (3) C2—C3 1.362 (5)
Zn1—N2 2.090 (3) C2—H2 0.9300
Zn1—N1 2.123 (3) C3—C4 1.381 (5)
Zn1—N1i 2.123 (3) C3—H3 0.9300
Zn1—O1i 2.243 (2) C4—C5 1.381 (4)
Zn1—O1 2.243 (2) C4—H4 0.9300
N1—C1 1.326 (4) C5—C6 1.463 (5)
N1—C5 1.353 (4) C7—C8 1.479 (5)
N2—C6 1.339 (4) C8—C9 1.378 (5)
N2—N3 1.366 (4) C8—C13 1.385 (5)
N3—C7 1.340 (4) C9—C10 1.396 (5)
N4—C6 1.346 (4) C9—H9 0.9300
N4—C7 1.365 (4) C10—C11 1.381 (5)
N5—C14 1.345 (6) C10—H10 0.9300
N5—C16 1.353 (5) C11—C12 1.368 (5)
N5—C11 1.433 (5) C12—C13 1.393 (5)
N6—C16 1.316 (6) C12—H12 0.9300
N6—C15 1.343 (6) C13—H13 0.9300
O1—H1B 0.8500 C14—C15 1.342 (6)
O1—H1 0.8199 C14—H14 0.9300
C1—C2 1.382 (5) C15—H15 0.9300
C1—H1A 0.9300 C16—H16 0.9300
N2i—Zn1—N2 180.0 C3—C4—C5 118.2 (4)
N2i—Zn1—N1 101.45 (11) C3—C4—H4 120.9
N2—Zn1—N1 78.55 (11) C5—C4—H4 120.9
N2i—Zn1—N1i 78.55 (11) N1—C5—C4 121.2 (3)
N2—Zn1—N1i 101.45 (11) N1—C5—C6 114.4 (3)
N1—Zn1—N1i 180.0 C4—C5—C6 124.4 (3)
N2i—Zn1—O1i 91.13 (10) N2—C6—N4 113.4 (3)
N2—Zn1—O1i 88.87 (10) N2—C6—C5 118.7 (3)
N1—Zn1—O1i 89.95 (10) N4—C6—C5 127.8 (3)
N1i—Zn1—O1i 90.05 (10) N3—C7—N4 114.3 (3)
N2i—Zn1—O1 88.87 (10) N3—C7—C8 121.3 (3)
N2—Zn1—O1 91.13 (10) N4—C7—C8 124.5 (3)
N1—Zn1—O1 90.05 (10) C9—C8—C13 118.2 (3)
N1i—Zn1—O1 89.95 (10) C9—C8—C7 122.2 (3)
O1i—Zn1—O1 180.0 C13—C8—C7 119.6 (4)
C1—N1—C5 119.3 (3) C8—C9—C10 120.8 (3)
C1—N1—Zn1 126.3 (3) C8—C9—H9 119.6
C5—N1—Zn1 114.3 (2) C10—C9—H9 119.6
C6—N2—N3 107.0 (3) C11—C10—C9 120.1 (4)
C6—N2—Zn1 113.4 (2) C11—C10—H10 119.9
N3—N2—Zn1 139.4 (2) C9—C10—H10 119.9
C7—N3—N2 104.4 (3) C12—C11—C10 119.7 (4)
C6—N4—C7 101.0 (3) C12—C11—N5 120.7 (3)
C14—N5—C16 105.4 (4) C10—C11—N5 119.6 (4)
C14—N5—C11 127.1 (3) C11—C12—C13 119.9 (4)
C16—N5—C11 127.4 (4) C11—C12—H12 120.0
C16—N6—C15 104.5 (4) C13—C12—H12 120.0
Zn1—O1—H1B 109.3 C8—C13—C12 121.3 (4)
Zn1—O1—H1 109.7 C8—C13—H13 119.4
H1B—O1—H1 109.8 C12—C13—H13 119.4
N1—C1—C2 122.5 (4) C15—C14—N5 107.2 (4)
N1—C1—H1A 118.8 C15—C14—H14 126.4
C2—C1—H1A 118.8 N5—C14—H14 126.4
C3—C2—C1 118.1 (4) C14—C15—N6 110.7 (5)
C3—C2—H2 121.0 C14—C15—H15 124.6
C1—C2—H2 121.0 N6—C15—H15 124.6
C2—C3—C4 120.7 (3) N6—C16—N5 112.2 (4)
C2—C3—H3 119.7 N6—C16—H16 123.9
C4—C3—H3 119.7 N5—C16—H16 123.9

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N6ii 0.82 2.03 2.842 (4) 174
O1—H1B···N4iii 0.85 2.07 2.868 (4) 157

Symmetry codes: (ii) −x+2, −y, −z+2; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2206).

References

  1. Braga, D., Polito, M., Giaffreda, S. L. & Grepioni, F. (2005). Discuss. Faraday Soc. pp. 2766–73. [DOI] [PubMed]
  2. Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (1997). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Faulmann, C., van Koningsbruggen, P. J., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1990). Acta Cryst. C46, 2357–2360.
  5. Han, Z. B., Cheng, X. N. & Chen, X. M. (2005). Cryst. Growth Des. E65, 695–700.
  6. Lin, J. B., Lin, R. B., Cheng, X. N., Zhang, J. P. & Chen, X. M. (2010). Chem. Commun. 47, 9185–9187. [DOI] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Xue, D. X., Lin, J. B., Zhang, J. P. & Chen, X. M. (2009). CrystEngComm, 11, 183–188.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035428/br2206sup1.cif

e-68-m1182-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035428/br2206Isup2.hkl

e-68-m1182-Isup2.hkl (129KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES