Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 23;68(Pt 9):m1187–m1188. doi: 10.1107/S1600536812035593

Tricarbonylbis­(triphenyl­phosphane-κP)iridium(I) hexa­fluoridophosphate methanol monosolvate

Ilana Engelbrecht a,*, Hendrik G Visser a, Andreas Roodt a
PMCID: PMC3435607  PMID: 22969480

Abstract

In the title compound, [Ir(C18H15P)2(CO)3]PF6·CH3OH, the IrI atom is coordinated by two triphenyl­phosphine ligands in axial sites and three carbonyl ligands in the equatorial plane of a fairly regular trigonal bipyramid: the equatorial C—Ir—C angles range from 115.45 (9) to 126.42 (10)°. The small deviations from the ideal tetra­hedral geometry around the P atoms are illustrated by C—P—C angles ranging from 104.08 (9) to 106.46 (9)°. In the crystal, the mol­ecules are linked by weak C—H⋯F, C—H⋯O and C—H⋯π inter­actions.

Related literature  

For related complexes, see: Randall et al. (1991, 1994); Raper & McDonald (1973). For other P-donor ligands, see: Purcell et al. (1995); Otto & Roodt (2001); Otto et al. (2005); Muller et al. (2008). For their use in catalytic olefin transformation reactions, see: Haumann et al. (2004); Crous et al. (2005); Booyens et al. (2007); Ferreira et al. (2007).graphic file with name e-68-m1187-scheme1.jpg

Experimental  

Crystal data  

  • [Ir(C18H15P)2(CO)3]PF6·CH4O

  • M r = 977.80

  • Monoclinic, Inline graphic

  • a = 16.487 (5) Å

  • b = 13.571 (4) Å

  • c = 20.903 (5) Å

  • β = 125.297 (5)°

  • V = 3817 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.69 mm−1

  • T = 100 K

  • 0.18 × 0.14 × 0.06 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.556, T max = 0.809

  • 68611 measured reflections

  • 9501 independent reflections

  • 8699 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.019

  • wR(F 2) = 0.044

  • S = 1.03

  • 9501 reflections

  • 489 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.75 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035593/hb6932sup1.cif

e-68-m1187-sup1.cif (43.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035593/hb6932Isup2.hkl

e-68-m1187-Isup2.hkl (455.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C11–C16, C21–C26 and C41–C46 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯F3i 0.95 2.39 3.281 (3) 157
C16—H16⋯F6i 0.95 2.53 3.319 (3) 141
C42—H42⋯F6i 0.95 2.38 3.138 (3) 136
C43—H43⋯F2i 0.95 2.49 3.386 (3) 158
C45—H45⋯O01ii 0.95 2.50 3.281 (3) 139
C64—H64⋯F4iii 0.95 2.47 3.200 (3) 133
O01—H01⋯F3i 0.84 2.27 3.059 (3) 157
C53—H53⋯Cg1iv 0.95 2.68 3.523 (2) 148
C35—H35⋯Cg3iv 0.95 2.91 3.587 (2) 129
C13—H13⋯Cg2v 0.95 2.97 3.744 (2) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

Financial assistance from the Department of Science and Technology (DST) of South Africa, the South African National Research Foundation (SA-NRF/THRIP), the DST–NRF centre of excellence (c*change), the University of the Free State and INKABA yeAfrica funding projects are gratefully acknowledged.

supplementary crystallographic information

Comment

P donor ligands (Muller et al., 2008; Purcell et al., 1995; Otto et al., 2005; Otto & Roodt, 2001) form part of ongoing research in different catalytic olefin transformation reactions such as hydroformylation (Haumann et al., 2004; Crous et al., 2005), metathesis (Booyens et al., 2007) and methoxycarbonylation (Ferreira et al., 2007). As part of our studies in this area, we now describe the structure of the title compound: all bond distances and angles fall within the range for similar complexes (Randall et al. 1991, 1994; Raper & McDonald, 1973).

The main fragment of the crystal structure of the title compound, [Ir(CO)3(PPh3)2](PF6).MeOH, was originally reported by Randall et al., 1991, in the trigonal form, crystallizing in the space group R3 with hydrogen sulfate as counter ion. In this case, the Ir(I) complex (Figure 1) crystallizes with one hexafluoridophosphate anion and a methanol solvent molecule in the P21/c spacegroup. The trigonal bipyramidal complex consists of three carbonyl groups in the equatorial plane and two triphenylphosphine ligands in the axial plane.

Similar Ir—P distances (2.3620 (8) and 2.3599 (8) Å) and P1—Ir—P2 angle of 177.047 (18) ° make the phosphine ligands equally trans. Ir—C3 distance of 1.947 (2) Å is slightly longer than for Ir—C1 and Ir—C2 distances, both equal to 1.938 (2) Å. Ir—C—O angles are close to linear (175.6 (2) - 178.8 (2) °) and C—O distances range from 1.107 (3) - 1.135 (3) Å, with C3—O3 distance the shortest. Angles between the equatorial ligands show some distortion with C2—Ir1—C3 = 115.45 (9) ° and C1—Ir1—C3 = 118.13 (9) ° compared to C2—Ir1—C1 = 126.42 (10) °. C—P—C angles range from 104.07 (9) - 106.46 (9) ° illustrating the distorted tetrahedral geometry around the P atoms.

In the crystal, weak C—H···F, C—H···O and C—H···π, interactions link the molecules into a supra-molecular network (Table 1).

Experimental

CO was bubbled through a solution of [Ir(COD)(PPh3)2]PF6 (cod = 1,5-cyclooctadiene) (50.0 mg, 0.0515 mmol) in benzene while the mixture was vigorously stirred under gentle reflux. Rapid displacement of COD occurs after which all solvents were evaporated. The product was filtered after the addition of methanol and diethyl ether. Slow evaporation of methanol solution gave yellow blocks. (Yield: 40.1 mg, 82%)

Refinement

The methine and aromatic H atoms were placed in geometrically idealized positions at C—H = 1.00 and 0.95 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak is located 0.79 Å from Ir1 and the deepest hole is situated 0.79 Å from F4.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Crystal data

[Ir(C18H15P)2(CO)3]PF6·CH4O F(000) = 1928
Mr = 977.80 Dx = 1.701 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 9817 reflections
a = 16.487 (5) Å θ = 2.6–28.3°
b = 13.571 (4) Å µ = 3.69 mm1
c = 20.903 (5) Å T = 100 K
β = 125.297 (5)° Block, yellow
V = 3817 (2) Å3 0.18 × 0.14 × 0.06 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 8699 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
φ and ω scans θmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −21→19
Tmin = 0.556, Tmax = 0.809 k = −18→15
68611 measured reflections l = −27→27
9501 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0153P)2 + 4.3801P] where P = (Fo2 + 2Fc2)/3
9501 reflections (Δ/σ)max = 0.004
489 parameters Δρmax = 1.01 e Å3
0 restraints Δρmin = −0.75 e Å3

Special details

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of ?? s/frame. A total of ??? frames were collected with a frame width of 0.5\ % covering up to θ = 28.0 ° with 99.9% completeness accomplished.Spectroscopy data: 1H NMR (300 MHz, (CD3)2CO): δ = 7.5–7.8 (m, 30H). 31P NMR (121 MHz, (CD3)2CO): δ = -1.6 (s), -143.0 (m, PF6). ν(CO): 1989, 2008, 2025 cm-1.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.85491 (15) 0.69659 (15) 0.67007 (13) 0.0193 (4)
C01 0.6389 (2) 0.5239 (2) 0.77777 (18) 0.0440 (7)
H01A 0.6237 0.5943 0.7739 0.066*
H01B 0.5781 0.4873 0.74 0.066*
H01C 0.6881 0.5132 0.7663 0.066*
C2 0.70334 (17) 0.63622 (15) 0.47318 (13) 0.0203 (4)
C3 0.64299 (15) 0.57286 (14) 0.59226 (12) 0.0171 (4)
C11 0.84576 (14) 0.41711 (14) 0.68487 (11) 0.0147 (4)
C12 0.85577 (16) 0.31492 (15) 0.68521 (12) 0.0183 (4)
H12 0.8498 0.2832 0.6422 0.022*
C13 0.87431 (16) 0.25962 (15) 0.74810 (13) 0.0209 (4)
H13 0.8808 0.1901 0.7479 0.025*
C14 0.88347 (16) 0.30508 (16) 0.81104 (13) 0.0216 (4)
H14 0.8963 0.2668 0.854 0.026*
C15 0.87397 (17) 0.40654 (17) 0.81152 (13) 0.0238 (5)
H15 0.8806 0.4378 0.855 0.029*
C16 0.85477 (16) 0.46261 (15) 0.74836 (12) 0.0194 (4)
H16 0.8478 0.5321 0.7486 0.023*
C21 0.95198 (14) 0.51021 (14) 0.62908 (12) 0.0143 (4)
C22 1.03624 (15) 0.46978 (15) 0.69615 (13) 0.0199 (4)
H22 1.0308 0.4353 0.7331 0.024*
C23 1.12827 (16) 0.48030 (17) 0.70857 (14) 0.0257 (5)
H23 1.1859 0.4531 0.7543 0.031*
C24 1.13651 (16) 0.52994 (16) 0.65505 (14) 0.0239 (5)
H24 1.1995 0.5358 0.6637 0.029*
C25 1.05332 (17) 0.57136 (16) 0.58874 (14) 0.0227 (4)
H25 1.0594 0.6059 0.5522 0.027*
C26 0.96128 (16) 0.56221 (15) 0.57591 (12) 0.0189 (4)
H26 0.9044 0.5914 0.5309 0.023*
C31 0.77070 (15) 0.40644 (14) 0.52184 (11) 0.0153 (4)
C32 0.82977 (17) 0.34357 (15) 0.51186 (13) 0.0186 (4)
H32 0.9001 0.348 0.5461 0.022*
C33 0.78507 (18) 0.27437 (16) 0.45141 (14) 0.0236 (5)
H33 0.8251 0.2313 0.4448 0.028*
C34 0.68332 (19) 0.26832 (17) 0.40143 (14) 0.0273 (5)
H34 0.6533 0.2209 0.3605 0.033*
C35 0.62365 (18) 0.33144 (17) 0.41046 (13) 0.0261 (5)
H35 0.5533 0.3274 0.3755 0.031*
C36 0.66749 (16) 0.39985 (16) 0.47064 (13) 0.0207 (4)
H36 0.627 0.4425 0.4771 0.025*
C41 0.60501 (15) 0.81216 (14) 0.60849 (12) 0.0162 (4)
C42 0.66416 (16) 0.78861 (16) 0.68786 (12) 0.0201 (4)
H42 0.7243 0.7532 0.7092 0.024*
C43 0.63557 (17) 0.81664 (18) 0.73602 (13) 0.0254 (5)
H43 0.6761 0.8006 0.7902 0.03*
C44 0.54769 (18) 0.86814 (17) 0.70476 (15) 0.0273 (5)
H44 0.5286 0.8881 0.7379 0.033*
C45 0.48746 (17) 0.89072 (16) 0.62554 (14) 0.0250 (5)
H45 0.4267 0.9249 0.6043 0.03*
C46 0.51604 (16) 0.86333 (15) 0.57727 (13) 0.0206 (4)
H46 0.4752 0.8793 0.5231 0.025*
C51 0.54265 (15) 0.78888 (14) 0.44876 (11) 0.0160 (4)
C52 0.46604 (15) 0.72272 (16) 0.42633 (13) 0.0212 (4)
H52 0.4704 0.6798 0.4641 0.025*
C53 0.38338 (17) 0.71896 (17) 0.34916 (13) 0.0253 (5)
H53 0.3314 0.6735 0.334 0.03*
C54 0.37697 (18) 0.78165 (19) 0.29442 (13) 0.0298 (5)
H54 0.3195 0.7806 0.2418 0.036*
C55 0.4536 (2) 0.8458 (2) 0.31567 (14) 0.0367 (6)
H55 0.4495 0.8874 0.2774 0.044*
C56 0.53717 (18) 0.84969 (17) 0.39324 (13) 0.0273 (5)
H56 0.5899 0.8938 0.4078 0.033*
C61 0.72295 (15) 0.89687 (14) 0.56249 (11) 0.0160 (4)
C62 0.69580 (16) 0.98774 (15) 0.57625 (13) 0.0212 (4)
H62 0.641 0.9916 0.5798 0.025*
C63 0.74831 (16) 1.07195 (16) 0.58478 (13) 0.0247 (5)
H63 0.7293 1.1336 0.5938 0.03*
C64 0.82869 (17) 1.06647 (16) 0.58012 (13) 0.0241 (5)
H64 0.8649 1.1244 0.5862 0.029*
C65 0.85644 (17) 0.97694 (16) 0.56662 (13) 0.0232 (5)
H65 0.9117 0.9733 0.5637 0.028*
C66 0.80312 (17) 0.89215 (15) 0.55739 (13) 0.0207 (4)
H66 0.8217 0.8308 0.5475 0.025*
O1 0.92145 (12) 0.73141 (12) 0.72421 (10) 0.0309 (4)
O01 0.67752 (15) 0.49056 (17) 0.85393 (12) 0.0471 (5)
H01 0.7328 0.5175 0.8858 0.071*
O2 0.67796 (14) 0.63197 (12) 0.40991 (10) 0.0315 (4)
O3 0.58781 (12) 0.53708 (12) 0.59882 (10) 0.0289 (4)
F1 0.9118 (2) 0.70324 (13) 0.40752 (13) 0.0768 (7)
F2 0.80028 (14) 0.79216 (18) 0.41110 (11) 0.0678 (6)
F3 0.88792 (15) 0.92851 (11) 0.43228 (10) 0.0497 (5)
F4 0.99908 (15) 0.8406 (2) 0.42799 (15) 0.0823 (8)
F5 0.95832 (15) 0.79933 (13) 0.51178 (9) 0.0612 (6)
F6 0.83935 (13) 0.83280 (13) 0.32776 (9) 0.0436 (4)
P1 0.82838 (4) 0.48994 (3) 0.60498 (3) 0.01235 (9)
P2 0.65123 (4) 0.78758 (4) 0.54975 (3) 0.01324 (10)
P3 0.90070 (4) 0.81519 (4) 0.41996 (3) 0.02208 (12)
Ir1 0.737840 (5) 0.637207 (5) 0.578891 (4) 0.01155 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0173 (10) 0.0155 (9) 0.0248 (11) 0.0027 (8) 0.0119 (9) −0.0008 (8)
C01 0.0380 (16) 0.0500 (17) 0.0486 (17) −0.0059 (13) 0.0276 (14) 0.0050 (14)
C2 0.0247 (11) 0.0148 (9) 0.0231 (11) 0.0036 (8) 0.0148 (9) 0.0028 (8)
C3 0.0192 (10) 0.0129 (9) 0.0193 (10) 0.0051 (7) 0.0111 (8) 0.0033 (7)
C11 0.0152 (9) 0.0134 (9) 0.0157 (9) 0.0012 (7) 0.0089 (8) 0.0029 (7)
C12 0.0227 (10) 0.0138 (9) 0.0221 (10) 0.0004 (8) 0.0151 (9) 0.0000 (8)
C13 0.0227 (11) 0.0145 (9) 0.0261 (11) 0.0026 (8) 0.0144 (9) 0.0042 (8)
C14 0.0220 (11) 0.0228 (11) 0.0193 (10) 0.0028 (8) 0.0116 (9) 0.0074 (8)
C15 0.0323 (12) 0.0226 (11) 0.0175 (10) 0.0031 (9) 0.0151 (9) 0.0012 (8)
C16 0.0252 (11) 0.0141 (9) 0.0188 (10) 0.0016 (8) 0.0126 (9) 0.0006 (8)
C21 0.0156 (9) 0.0112 (8) 0.0191 (9) −0.0007 (7) 0.0119 (8) −0.0032 (7)
C22 0.0193 (10) 0.0158 (9) 0.0231 (10) 0.0014 (8) 0.0113 (9) 0.0012 (8)
C23 0.0162 (10) 0.0230 (11) 0.0312 (12) 0.0028 (8) 0.0097 (9) −0.0021 (9)
C24 0.0184 (10) 0.0218 (11) 0.0369 (13) −0.0046 (8) 0.0190 (10) −0.0099 (9)
C25 0.0256 (11) 0.0220 (10) 0.0297 (11) −0.0068 (8) 0.0213 (10) −0.0062 (9)
C26 0.0197 (10) 0.0189 (10) 0.0199 (10) −0.0020 (8) 0.0124 (9) −0.0009 (8)
C31 0.0203 (10) 0.0116 (8) 0.0170 (9) −0.0027 (7) 0.0125 (8) −0.0007 (7)
C32 0.0229 (11) 0.0163 (9) 0.0223 (10) −0.0030 (8) 0.0164 (9) −0.0026 (8)
C33 0.0354 (13) 0.0198 (10) 0.0290 (11) −0.0067 (9) 0.0264 (11) −0.0075 (9)
C34 0.0379 (13) 0.0244 (11) 0.0253 (11) −0.0109 (10) 0.0215 (11) −0.0102 (9)
C35 0.0236 (11) 0.0272 (11) 0.0225 (11) −0.0077 (9) 0.0104 (10) −0.0061 (9)
C36 0.0211 (10) 0.0175 (10) 0.0235 (10) −0.0013 (8) 0.0129 (9) −0.0007 (8)
C41 0.0182 (10) 0.0128 (9) 0.0200 (10) −0.0001 (7) 0.0124 (8) −0.0003 (7)
C42 0.0201 (10) 0.0214 (10) 0.0183 (10) 0.0020 (8) 0.0107 (9) −0.0013 (8)
C43 0.0271 (12) 0.0296 (12) 0.0188 (10) 0.0013 (9) 0.0129 (9) −0.0038 (9)
C44 0.0315 (13) 0.0272 (12) 0.0326 (13) −0.0019 (9) 0.0240 (11) −0.0093 (10)
C45 0.0235 (11) 0.0203 (10) 0.0352 (13) 0.0038 (8) 0.0193 (10) −0.0017 (9)
C46 0.0193 (10) 0.0183 (10) 0.0249 (11) 0.0033 (8) 0.0131 (9) 0.0034 (8)
C51 0.0154 (9) 0.0142 (9) 0.0148 (9) 0.0017 (7) 0.0067 (8) 0.0010 (7)
C52 0.0179 (10) 0.0217 (10) 0.0216 (10) 0.0002 (8) 0.0100 (9) 0.0052 (8)
C53 0.0187 (11) 0.0272 (11) 0.0245 (11) −0.0036 (9) 0.0094 (9) 0.0008 (9)
C54 0.0238 (12) 0.0374 (13) 0.0170 (10) −0.0045 (10) 0.0054 (9) 0.0017 (9)
C55 0.0366 (14) 0.0411 (15) 0.0195 (11) −0.0104 (11) 0.0088 (11) 0.0101 (10)
C56 0.0272 (12) 0.0264 (11) 0.0191 (11) −0.0097 (9) 0.0081 (10) 0.0021 (9)
C61 0.0175 (10) 0.0123 (9) 0.0144 (9) −0.0004 (7) 0.0070 (8) 0.0014 (7)
C62 0.0168 (10) 0.0151 (9) 0.0277 (11) 0.0006 (8) 0.0105 (9) −0.0013 (8)
C63 0.0221 (11) 0.0147 (10) 0.0304 (12) −0.0002 (8) 0.0111 (10) −0.0029 (8)
C64 0.0260 (11) 0.0158 (10) 0.0270 (11) −0.0059 (8) 0.0132 (10) −0.0004 (8)
C65 0.0271 (11) 0.0198 (10) 0.0287 (11) −0.0054 (9) 0.0196 (10) −0.0020 (9)
C66 0.0283 (11) 0.0134 (9) 0.0264 (11) −0.0018 (8) 0.0191 (10) −0.0006 (8)
O1 0.0211 (8) 0.0299 (9) 0.0331 (9) −0.0048 (7) 0.0107 (7) −0.0090 (7)
O01 0.0427 (12) 0.0584 (14) 0.0467 (12) −0.0160 (10) 0.0296 (10) 0.0019 (10)
O2 0.0462 (11) 0.0303 (9) 0.0228 (9) 0.0040 (8) 0.0226 (8) 0.0037 (7)
O3 0.0280 (9) 0.0250 (8) 0.0375 (10) 0.0001 (7) 0.0211 (8) 0.0052 (7)
F1 0.136 (2) 0.0262 (9) 0.0671 (13) 0.0119 (11) 0.0580 (14) −0.0049 (9)
F2 0.0527 (11) 0.1141 (18) 0.0538 (11) −0.0414 (12) 0.0407 (10) −0.0299 (12)
F3 0.0909 (14) 0.0237 (8) 0.0456 (10) 0.0033 (8) 0.0458 (10) 0.0005 (7)
F4 0.0368 (11) 0.129 (2) 0.0927 (17) −0.0237 (12) 0.0442 (12) −0.0429 (15)
F5 0.0807 (14) 0.0453 (10) 0.0234 (8) 0.0142 (9) 0.0104 (9) 0.0076 (7)
F6 0.0566 (11) 0.0478 (9) 0.0238 (8) −0.0030 (8) 0.0216 (8) 0.0000 (7)
P1 0.0147 (2) 0.0100 (2) 0.0142 (2) 0.00026 (17) 0.00941 (19) 0.00037 (17)
P2 0.0144 (2) 0.0102 (2) 0.0147 (2) 0.00088 (17) 0.0081 (2) 0.00118 (18)
P3 0.0224 (3) 0.0202 (3) 0.0206 (3) −0.0001 (2) 0.0107 (2) −0.0002 (2)
Ir1 0.01286 (4) 0.00918 (4) 0.01346 (4) 0.00053 (3) 0.00809 (3) 0.00089 (3)

Geometric parameters (Å, º)

Ir1—C1 1.938 (2) C35—H35 0.95
Ir1—C2 1.938 (2) C36—H36 0.95
Ir1—C3 1.947 (2) C41—C42 1.391 (3)
Ir1—P1 2.3620 (8) C41—C46 1.398 (3)
Ir1—P2 2.3599 (8) C41—P2 1.811 (2)
C1—O1 1.128 (3) C42—C43 1.389 (3)
C01—O01 1.405 (3) C42—H42 0.95
C01—H01A 0.98 C43—C44 1.386 (3)
C01—H01B 0.98 C43—H43 0.95
C01—H01C 0.98 C44—C45 1.386 (3)
C2—O2 1.135 (3) C44—H44 0.95
C3—O3 1.107 (3) C45—C46 1.388 (3)
C11—C16 1.392 (3) C45—H45 0.95
C11—C12 1.396 (3) C46—H46 0.95
C11—P1 1.815 (2) C51—C56 1.384 (3)
C12—C13 1.386 (3) C51—C52 1.392 (3)
C12—H12 0.95 C51—P2 1.815 (2)
C13—C14 1.380 (3) C52—C53 1.386 (3)
C13—H13 0.95 C52—H52 0.95
C14—C15 1.387 (3) C53—C54 1.380 (3)
C14—H14 0.95 C53—H53 0.95
C15—C16 1.393 (3) C54—C55 1.379 (3)
C15—H15 0.95 C54—H54 0.95
C16—H16 0.95 C55—C56 1.396 (3)
C21—C22 1.395 (3) C55—H55 0.95
C21—C26 1.398 (3) C56—H56 0.95
C21—P1 1.815 (2) C61—C66 1.388 (3)
C22—C23 1.391 (3) C61—C62 1.397 (3)
C22—H22 0.95 C61—P2 1.818 (2)
C23—C24 1.378 (3) C62—C63 1.382 (3)
C23—H23 0.95 C62—H62 0.95
C24—C25 1.386 (3) C63—C64 1.386 (3)
C24—H24 0.95 C63—H63 0.95
C25—C26 1.386 (3) C64—C65 1.384 (3)
C25—H25 0.95 C64—H64 0.95
C26—H26 0.95 C65—C66 1.392 (3)
C31—C36 1.394 (3) C65—H65 0.95
C31—C32 1.398 (3) C66—H66 0.95
C31—P1 1.816 (2) O01—H01 0.84
C32—C33 1.395 (3) P3—F1 1.5698 (19)
C32—H32 0.95 P3—F2 1.5870 (19)
C33—C34 1.374 (3) P3—F3 1.5933 (17)
C33—H33 0.95 P3—F4 1.569 (2)
C34—C35 1.397 (3) P3—F5 1.5890 (17)
C34—H34 0.95 P3—F6 1.5943 (16)
C35—C36 1.384 (3)
O1—C1—Ir1 177.8 (2) C45—C46—C41 119.9 (2)
O01—C01—H01A 109.5 C45—C46—H46 120
O01—C01—H01B 109.5 C41—C46—H46 120
H01A—C01—H01B 109.5 C56—C51—C52 119.69 (19)
O01—C01—H01C 109.5 C56—C51—P2 121.59 (16)
H01A—C01—H01C 109.5 C52—C51—P2 118.61 (16)
H01B—C01—H01C 109.5 C53—C52—C51 120.4 (2)
O2—C2—Ir1 175.6 (2) C53—C52—H52 119.8
O3—C3—Ir1 178.8 (2) C51—C52—H52 119.8
C16—C11—C12 119.26 (18) C54—C53—C52 119.7 (2)
C16—C11—P1 120.58 (15) C54—C53—H53 120.2
C12—C11—P1 120.06 (15) C52—C53—H53 120.2
C13—C12—C11 120.23 (19) C55—C54—C53 120.3 (2)
C13—C12—H12 119.9 C55—C54—H54 119.8
C11—C12—H12 119.9 C53—C54—H54 119.8
C14—C13—C12 120.3 (2) C54—C55—C56 120.3 (2)
C14—C13—H13 119.8 C54—C55—H55 119.9
C12—C13—H13 119.8 C56—C55—H55 119.9
C13—C14—C15 120.0 (2) C51—C56—C55 119.6 (2)
C13—C14—H14 120 C51—C56—H56 120.2
C15—C14—H14 120 C55—C56—H56 120.2
C14—C15—C16 120.0 (2) C66—C61—C62 119.29 (19)
C14—C15—H15 120 C66—C61—P2 121.26 (16)
C16—C15—H15 120 C62—C61—P2 119.44 (16)
C11—C16—C15 120.14 (19) C63—C62—C61 120.3 (2)
C11—C16—H16 119.9 C63—C62—H62 119.8
C15—C16—H16 119.9 C61—C62—H62 119.8
C22—C21—C26 119.65 (19) C62—C63—C64 120.0 (2)
C22—C21—P1 121.71 (16) C62—C63—H63 120
C26—C21—P1 118.50 (15) C64—C63—H63 120
C23—C22—C21 119.5 (2) C65—C64—C63 120.2 (2)
C23—C22—H22 120.2 C65—C64—H64 119.9
C21—C22—H22 120.2 C63—C64—H64 119.9
C24—C23—C22 120.5 (2) C64—C65—C66 119.8 (2)
C24—C23—H23 119.8 C64—C65—H65 120.1
C22—C23—H23 119.8 C66—C65—H65 120.1
C23—C24—C25 120.4 (2) C61—C66—C65 120.3 (2)
C23—C24—H24 119.8 C61—C66—H66 119.9
C25—C24—H24 119.8 C65—C66—H66 119.9
C26—C25—C24 119.8 (2) C01—O01—H01 109.5
C26—C25—H25 120.1 C11—P1—C21 105.79 (9)
C24—C25—H25 120.1 C11—P1—C31 104.93 (9)
C25—C26—C21 120.2 (2) C21—P1—C31 104.07 (9)
C25—C26—H26 119.9 C11—P1—Ir1 114.58 (7)
C21—C26—H26 119.9 C21—P1—Ir1 113.22 (7)
C36—C31—C32 119.51 (19) C31—P1—Ir1 113.28 (7)
C36—C31—P1 120.43 (16) C41—P2—C51 105.55 (10)
C32—C31—P1 119.92 (16) C41—P2—C61 104.08 (9)
C33—C32—C31 119.8 (2) C51—P2—C61 106.46 (9)
C33—C32—H32 120.1 C41—P2—Ir1 114.40 (7)
C31—C32—H32 120.1 C51—P2—Ir1 110.59 (7)
C34—C33—C32 120.2 (2) C61—P2—Ir1 114.98 (7)
C34—C33—H33 119.9 F4—P3—F1 91.02 (14)
C32—C33—H33 119.9 F4—P3—F2 178.61 (15)
C33—C34—C35 120.4 (2) F1—P3—F2 90.22 (14)
C33—C34—H34 119.8 F4—P3—F5 92.35 (13)
C35—C34—H34 119.8 F1—P3—F5 91.35 (11)
C36—C35—C34 119.7 (2) F2—P3—F5 88.26 (12)
C36—C35—H35 120.2 F4—P3—F3 89.76 (12)
C34—C35—H35 120.2 F1—P3—F3 179.21 (13)
C35—C36—C31 120.4 (2) F2—P3—F3 88.99 (12)
C35—C36—H36 119.8 F5—P3—F3 88.74 (9)
C31—C36—H36 119.8 F4—P3—F6 89.48 (12)
C42—C41—C46 119.6 (2) F1—P3—F6 89.89 (11)
C42—C41—P2 119.11 (16) F2—P3—F6 89.89 (10)
C46—C41—P2 120.93 (16) F5—P3—F6 177.78 (11)
C43—C42—C41 120.3 (2) F3—P3—F6 90.00 (9)
C43—C42—H42 119.9 C2—Ir1—C1 126.42 (10)
C41—C42—H42 119.9 C2—Ir1—C3 115.45 (9)
C44—C43—C42 119.8 (2) C1—Ir1—C3 118.13 (9)
C44—C43—H43 120.1 C2—Ir1—P2 88.65 (6)
C42—C43—H43 120.1 C1—Ir1—P2 90.26 (6)
C43—C44—C45 120.4 (2) C3—Ir1—P2 90.49 (6)
C43—C44—H44 119.8 C2—Ir1—P1 89.28 (6)
C45—C44—H44 119.8 C1—Ir1—P1 89.27 (6)
C44—C45—C46 120.0 (2) C3—Ir1—P1 92.30 (6)
C44—C45—H45 120 P2—Ir1—P1 177.047 (18)
C46—C45—H45 120
C16—C11—C12—C13 0.1 (3) C12—C11—P1—C31 26.42 (19)
P1—C11—C12—C13 176.57 (16) C16—C11—P1—Ir1 −32.28 (19)
C11—C12—C13—C14 −0.3 (3) C12—C11—P1—Ir1 151.30 (14)
C12—C13—C14—C15 0.1 (3) C22—C21—P1—C11 2.27 (19)
C13—C14—C15—C16 0.3 (3) C26—C21—P1—C11 177.92 (16)
C12—C11—C16—C15 0.3 (3) C22—C21—P1—C31 −108.02 (17)
P1—C11—C16—C15 −176.18 (17) C26—C21—P1—C31 67.63 (17)
C14—C15—C16—C11 −0.5 (3) C22—C21—P1—Ir1 128.54 (15)
C26—C21—C22—C23 −1.1 (3) C26—C21—P1—Ir1 −55.80 (17)
P1—C21—C22—C23 174.49 (16) C36—C31—P1—C11 91.01 (18)
C21—C22—C23—C24 −0.2 (3) C32—C31—P1—C11 −84.74 (18)
C22—C23—C24—C25 1.0 (3) C36—C31—P1—C21 −158.07 (17)
C23—C24—C25—C26 −0.5 (3) C32—C31—P1—C21 26.19 (19)
C24—C25—C26—C21 −0.9 (3) C36—C31—P1—Ir1 −34.68 (18)
C22—C21—C26—C25 1.7 (3) C32—C31—P1—Ir1 149.57 (14)
P1—C21—C26—C25 −174.07 (16) C42—C41—P2—C51 161.74 (16)
C36—C31—C32—C33 −0.6 (3) C46—C41—P2—C51 −24.91 (19)
P1—C31—C32—C33 175.17 (16) C42—C41—P2—C61 −86.35 (18)
C31—C32—C33—C34 0.4 (3) C46—C41—P2—C61 86.99 (18)
C32—C33—C34—C35 0.2 (4) C42—C41—P2—Ir1 39.93 (18)
C33—C34—C35—C36 −0.6 (4) C46—C41—P2—Ir1 −146.72 (15)
C34—C35—C36—C31 0.4 (3) C56—C51—P2—C41 124.9 (2)
C32—C31—C36—C35 0.2 (3) C52—C51—P2—C41 −58.94 (19)
P1—C31—C36—C35 −175.57 (17) C56—C51—P2—C61 14.6 (2)
C46—C41—C42—C43 −0.7 (3) C52—C51—P2—C61 −169.15 (17)
P2—C41—C42—C43 172.75 (17) C56—C51—P2—Ir1 −110.90 (19)
C41—C42—C43—C44 0.1 (3) C52—C51—P2—Ir1 65.30 (18)
C42—C43—C44—C45 0.9 (4) C66—C61—P2—C41 151.24 (17)
C43—C44—C45—C46 −1.2 (4) C62—C61—P2—C41 −29.95 (19)
C44—C45—C46—C41 0.6 (3) C66—C61—P2—C51 −97.51 (18)
C42—C41—C46—C45 0.3 (3) C62—C61—P2—C51 81.29 (18)
P2—C41—C46—C45 −173.00 (17) C66—C61—P2—Ir1 25.32 (19)
C56—C51—C52—C53 −1.5 (3) C62—C61—P2—Ir1 −155.87 (15)
P2—C51—C52—C53 −177.75 (18) C41—P2—Ir1—C2 154.66 (10)
C51—C52—C53—C54 −0.3 (4) C51—P2—Ir1—C2 35.65 (10)
C52—C53—C54—C55 1.9 (4) C61—P2—Ir1—C2 −84.94 (10)
C53—C54—C55—C56 −1.7 (4) C41—P2—Ir1—C1 −78.91 (10)
C52—C51—C56—C55 1.6 (4) C51—P2—Ir1—C1 162.08 (10)
P2—C51—C56—C55 177.8 (2) C61—P2—Ir1—C1 41.48 (10)
C54—C55—C56—C51 0.0 (4) C41—P2—Ir1—C3 39.22 (10)
C66—C61—C62—C63 −0.1 (3) C51—P2—Ir1—C3 −79.79 (10)
P2—C61—C62—C63 −178.91 (17) C61—P2—Ir1—C3 159.61 (9)
C61—C62—C63—C64 −0.3 (3) C11—P1—Ir1—C2 −156.99 (10)
C62—C63—C64—C65 0.3 (4) C21—P1—Ir1—C2 81.56 (10)
C63—C64—C65—C66 0.3 (4) C31—P1—Ir1—C2 −36.64 (10)
C62—C61—C66—C65 0.6 (3) C11—P1—Ir1—C1 76.58 (10)
P2—C61—C66—C65 179.41 (17) C21—P1—Ir1—C1 −44.87 (10)
C64—C65—C66—C61 −0.7 (3) C31—P1—Ir1—C1 −163.08 (10)
C16—C11—P1—C21 93.15 (18) C11—P1—Ir1—C3 −41.55 (9)
C12—C11—P1—C21 −83.26 (18) C21—P1—Ir1—C3 −163.00 (9)
C16—C11—P1—C31 −157.16 (17) C31—P1—Ir1—C3 78.80 (10)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the C11–C16, C21–C26 and C41–C46 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C15—H15···F3i 0.95 2.39 3.281 (3) 157
C16—H16···F6i 0.95 2.53 3.319 (3) 141
C42—H42···F6i 0.95 2.38 3.138 (3) 136
C43—H43···F2i 0.95 2.49 3.386 (3) 158
C45—H45···O01ii 0.95 2.50 3.281 (3) 139
C64—H64···F4iii 0.95 2.47 3.200 (3) 133
O01—H01···F3i 0.84 2.27 3.059 (3) 157
C53—H53···Cg1iv 0.95 2.68 3.523 (2) 148
C35—H35···Cg3iv 0.95 2.91 3.587 (2) 129
C13—H13···Cg2v 0.95 2.97 3.744 (2) 140

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, y+1/2, −z+3/2; (iii) −x+2, −y+2, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6932).

References

  1. Booyens, S., Roodt, A. & Wendt, O. F. (2007). J. Organomet. Chem. 692, 5508–5512.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2011). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108–1116. [DOI] [PubMed]
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Ferreira, A. C., Crous, R., Bennie, L., Meij, A. M. M., Blann, K., Bezuidenhoudt, B. C. B., Young, D. A., Green, M. J. & Roodt, A. (2007). Angew. Chem. Int. Ed. 46, 2273–2275. [DOI] [PubMed]
  8. Haumann, M., Meijboom, R., Moss, J. R. & Roodt, A. (2004). Dalton Trans. pp. 1679–1686. [DOI] [PubMed]
  9. Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657. [DOI] [PubMed]
  10. Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337–4342.
  11. Otto, S. & Roodt, A. (2001). Inorg. Chem. Commun. 4, 49–52.
  12. Purcell, W., Basson, S. S., Leipoldt, J. G., Roodt, A. & Preston, H. (1995). Inorg. Chim. Acta, 234, 153–156.
  13. Randall, S. L., Miller, C. A., See, R. F., Churchill, M. R., Janik, T. S., Lake, C. H. & Atwood, J. D. (1994). Organometallics, 13, 5088–5095.
  14. Randall, S. L., Thompson, J. S., Buttrey, L. A., Ziller, J. W., Churchill, M. R. & Atwood, J. D. (1991). Organometallics, 10, 683–688.
  15. Raper, G. & McDonald, W. S. (1973). Acta Cryst. B29, 2013–2014.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035593/hb6932sup1.cif

e-68-m1187-sup1.cif (43.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035593/hb6932Isup2.hkl

e-68-m1187-Isup2.hkl (455.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES