Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 23;68(Pt 9):m1195. doi: 10.1107/S1600536812035751

Di-μ-azido-κ4 N 1:N 1′-bis­({1-[(E)-phen­yl(pyridin-2-yl-κN)methyl­idene]thio­semi­carbazidato-κ2 N 1,S}copper(II))

Roji J Kunnath a, M R Prathapachandra Kurup a, Seik Weng Ng b,c,*
PMCID: PMC3435612  PMID: 22969485

Abstract

In the title compound, [Cu2(C13H11N4S)2(N3)2], the CuII cation is N,N′,S-chelated by the deprotonated Schiff base ligand and is coordinated by the azide anion, while an N atom from an adjacent azide anion bridges the CuII cation at the apical position with a longer Cu—N distance of 2.533 (3) Å, completing the distorted N4S square-pyramidal coordination geometry. A pair of azide anions bridge the two CuII cations, forming a centrosymmetric binuclear mol­ecule. In the crystal, the binuclear mol­ecules are linked by an N—H⋯N hydrogen bond into a ribbon running along the a axis.

Related literature  

For the structure of the parent Schiff base, see: Casas et al. (2003).graphic file with name e-68-m1195-scheme1.jpg

Experimental  

Crystal data  

  • [Cu2(C13H11N4S)2(N3)2]

  • M r = 721.78

  • Monoclinic, Inline graphic

  • a = 11.2462 (12) Å

  • b = 7.2344 (10) Å

  • c = 18.519 (2) Å

  • β = 96.653 (5)°

  • V = 1496.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.604, T max = 0.690

  • 13614 measured reflections

  • 3747 independent reflections

  • 2973 reflections with I > 2σ(I)

  • R int = 0.075

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.134

  • S = 1.04

  • 3747 reflections

  • 205 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035751/xu5611sup1.cif

e-68-m1195-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035751/xu5611Isup2.hkl

e-68-m1195-Isup2.hkl (183.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯N2i 0.87 (1) 2.22 (1) 3.075 (3) 168 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

RJK thanks the University Grants Commission (India) for a Junior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

supplementary crystallographic information

Comment

2-Benzoylpyridine thiosemicarbazone (Casas et al., 2003) is a Schiff base that is capable of N,N',S-chelation to metal ions. The CuII atom in [Cu(N3)(C13H11N4S)]2 (Scheme I) is N,N',S-chelated by the deprotonated Schiff base, and it exists in a square pyramidal environment (Fig. 1). Two molecules are disposed about a center-of-inversion and the distance between the copper atom and their apical nitrogen atom of the other azide is 2.533 (3) Å. Adjacent inversion-related pairs of molecules are linked by an N–H···N hydrogen bond to form a ribbon running along the a-axis (Table 1).

Experimental

The Schiff base ligand by heating 2-benzoylpyridine (0.183 g,1 mmol) and thiosemicarbazide (0.091 g,1 mmol) for 3 h. Copper acetate hydrate (0.199 g,1 mmol) and sodium azide (0.065 g,1 mmol) was added and the solution heated for another 2 h. Dark green colored crystals were obtained from the cool solution.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino H-atoms were located in a difference Fouier and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors tied by a factor of 1.2 times.

Omitted owing interference from the beam stop was (1 0 0).

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of [Cu(N3)(C13H11N4S)]2 at the 570% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Cu2(C13H11N4S)2(N3)2] F(000) = 732
Mr = 721.78 Dx = 1.602 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4663 reflections
a = 11.2462 (12) Å θ = 3.0–28.3°
b = 7.2344 (10) Å µ = 1.61 mm1
c = 18.519 (2) Å T = 295 K
β = 96.653 (5)° Prism, dark green
V = 1496.5 (3) Å3 0.35 × 0.30 × 0.25 mm
Z = 2

Data collection

Bruker Kappa APEXII diffractometer 3747 independent reflections
Radiation source: fine-focus sealed tube 2973 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.075
ω scans θmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→15
Tmin = 0.604, Tmax = 0.690 k = −9→9
13614 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.1161P] where P = (Fo2 + 2Fc2)/3
3747 reflections (Δ/σ)max = 0.001
205 parameters Δρmax = 0.54 e Å3
2 restraints Δρmin = −0.66 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.40816 (2) 0.66511 (5) 0.521018 (15) 0.03737 (14)
S1 0.31362 (6) 0.55753 (11) 0.61376 (3) 0.0469 (2)
N1 0.24572 (17) 0.7151 (3) 0.47503 (10) 0.0345 (4)
N2 0.14750 (19) 0.6402 (3) 0.50005 (12) 0.0408 (5)
N3 0.0841 (2) 0.4802 (5) 0.59265 (14) 0.0617 (8)
H1 0.023 (2) 0.456 (6) 0.5610 (15) 0.074*
H2 0.101 (3) 0.422 (5) 0.6343 (12) 0.074*
N4 0.44641 (18) 0.8236 (3) 0.43679 (11) 0.0377 (5)
N5 0.5749 (2) 0.6199 (4) 0.55657 (12) 0.0468 (6)
N6 0.6113 (2) 0.5803 (4) 0.61823 (13) 0.0487 (6)
N7 0.6497 (3) 0.5408 (5) 0.67545 (14) 0.0721 (9)
C1 0.1174 (2) 0.8573 (3) 0.37564 (12) 0.0340 (5)
C2 0.0861 (3) 0.7823 (4) 0.30754 (14) 0.0454 (6)
H2A 0.1412 0.7109 0.2861 0.054*
C3 −0.0264 (3) 0.8127 (5) 0.27110 (15) 0.0506 (7)
H3 −0.0470 0.7627 0.2251 0.061*
C4 −0.1078 (2) 0.9171 (5) 0.30306 (16) 0.0506 (7)
H4 −0.1848 0.9339 0.2796 0.061*
C5 −0.0752 (3) 0.9963 (5) 0.36967 (17) 0.0556 (8)
H5 −0.1294 1.0707 0.3906 0.067*
C6 0.0364 (2) 0.9669 (4) 0.40563 (14) 0.0456 (6)
H6 0.0576 1.0216 0.4507 0.055*
C7 0.2345 (2) 0.8130 (3) 0.41657 (12) 0.0335 (5)
C8 0.1738 (2) 0.5609 (4) 0.56389 (13) 0.0414 (6)
C9 0.3482 (2) 0.8757 (4) 0.39278 (13) 0.0349 (5)
C10 0.3555 (2) 0.9761 (4) 0.33033 (14) 0.0438 (6)
H10 0.2866 1.0115 0.3010 0.053*
C11 0.4675 (3) 1.0232 (5) 0.31207 (16) 0.0510 (7)
H11 0.4750 1.0910 0.2702 0.061*
C12 0.5668 (3) 0.9688 (5) 0.35637 (17) 0.0546 (7)
H12 0.6428 0.9978 0.3446 0.065*
C13 0.5534 (2) 0.8708 (4) 0.41863 (16) 0.0460 (6)
H13 0.6214 0.8364 0.4490 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.03127 (19) 0.0431 (2) 0.0358 (2) 0.00031 (11) −0.00433 (13) 0.00303 (12)
S1 0.0438 (4) 0.0589 (5) 0.0356 (3) −0.0033 (3) −0.0049 (3) 0.0100 (3)
N1 0.0312 (9) 0.0386 (12) 0.0328 (9) −0.0013 (8) −0.0002 (7) 0.0049 (8)
N2 0.0332 (10) 0.0478 (14) 0.0404 (11) −0.0046 (9) −0.0003 (8) 0.0132 (9)
N3 0.0541 (15) 0.079 (2) 0.0504 (14) −0.0192 (14) −0.0032 (11) 0.0287 (14)
N4 0.0325 (10) 0.0390 (13) 0.0410 (11) −0.0018 (8) 0.0018 (8) −0.0002 (8)
N5 0.0366 (11) 0.0595 (16) 0.0412 (12) 0.0036 (11) −0.0092 (9) 0.0006 (11)
N6 0.0408 (11) 0.0518 (16) 0.0499 (13) 0.0046 (10) −0.0099 (10) −0.0094 (11)
N7 0.081 (2) 0.083 (2) 0.0462 (14) 0.0153 (16) −0.0196 (13) −0.0044 (14)
C1 0.0341 (11) 0.0368 (14) 0.0308 (11) −0.0008 (9) 0.0026 (9) 0.0077 (9)
C2 0.0456 (14) 0.0489 (17) 0.0402 (13) 0.0035 (12) −0.0013 (10) −0.0058 (12)
C3 0.0508 (16) 0.061 (2) 0.0370 (13) −0.0032 (13) −0.0064 (11) 0.0039 (12)
C4 0.0367 (13) 0.060 (2) 0.0527 (15) 0.0040 (12) −0.0052 (11) 0.0219 (14)
C5 0.0421 (14) 0.065 (2) 0.0608 (17) 0.0200 (14) 0.0120 (12) 0.0086 (15)
C6 0.0455 (14) 0.0547 (18) 0.0368 (12) 0.0050 (12) 0.0057 (10) 0.0012 (11)
C7 0.0319 (11) 0.0343 (14) 0.0337 (11) 0.0022 (9) 0.0012 (9) 0.0002 (9)
C8 0.0409 (13) 0.0449 (17) 0.0370 (12) −0.0025 (11) −0.0006 (10) 0.0075 (10)
C9 0.0348 (11) 0.0332 (13) 0.0369 (11) −0.0001 (10) 0.0050 (9) −0.0004 (9)
C10 0.0446 (14) 0.0453 (17) 0.0418 (13) −0.0020 (11) 0.0062 (11) 0.0050 (11)
C11 0.0551 (17) 0.0497 (18) 0.0508 (15) −0.0051 (13) 0.0171 (13) 0.0057 (13)
C12 0.0425 (14) 0.055 (2) 0.0695 (19) −0.0090 (13) 0.0208 (13) −0.0018 (15)
C13 0.0336 (12) 0.0482 (17) 0.0557 (16) −0.0032 (11) 0.0034 (11) −0.0029 (12)

Geometric parameters (Å, º)

Cu1—N5 1.942 (2) C2—C3 1.381 (4)
Cu1—N1 1.9578 (19) C2—H2A 0.9300
Cu1—N4 2.022 (2) C3—C4 1.373 (4)
Cu1—S1 2.2603 (8) C3—H3 0.9300
Cu1—N5i 2.533 (3) C4—C5 1.371 (5)
S1—C8 1.729 (3) C4—H4 0.9300
N1—C7 1.287 (3) C5—C6 1.368 (4)
N1—N2 1.359 (3) C5—H5 0.9300
N2—C8 1.316 (3) C6—H6 0.9300
N3—C8 1.329 (4) C7—C9 1.472 (3)
N3—H1 0.872 (10) C9—C10 1.376 (3)
N3—H2 0.879 (10) C10—C11 1.384 (4)
N4—C13 1.331 (3) C10—H10 0.9300
N4—C9 1.348 (3) C11—C12 1.364 (4)
N5—N6 1.202 (3) C11—H11 0.9300
N6—N7 1.134 (3) C12—C13 1.377 (4)
C1—C6 1.372 (4) C12—H12 0.9300
C1—C2 1.380 (4) C13—H13 0.9300
C1—C7 1.477 (3)
N5—Cu1—N1 173.91 (9) C2—C3—H3 120.1
N5—Cu1—N4 94.22 (9) C5—C4—C3 119.7 (2)
N1—Cu1—N4 80.26 (8) C5—C4—H4 120.1
N5—Cu1—S1 101.84 (7) C3—C4—H4 120.1
N1—Cu1—S1 84.08 (6) C6—C5—C4 120.5 (3)
N4—Cu1—S1 160.44 (7) C6—C5—H5 119.7
N5—Cu1—N5i 85.54 (9) C4—C5—H5 119.7
N1—Cu1—N5i 91.79 (8) C5—C6—C1 120.5 (3)
N4—Cu1—N5i 89.28 (8) C5—C6—H6 119.8
S1—Cu1—N5i 102.92 (6) C1—C6—H6 119.8
C8—S1—Cu1 93.90 (9) N1—C7—C9 114.7 (2)
C7—N1—N2 120.1 (2) N1—C7—C1 123.1 (2)
C7—N1—Cu1 117.58 (17) C9—C7—C1 122.3 (2)
N2—N1—Cu1 122.15 (15) N2—C8—N3 116.7 (2)
C8—N2—N1 111.9 (2) N2—C8—S1 125.6 (2)
C8—N3—H1 114 (2) N3—C8—S1 117.71 (19)
C8—N3—H2 118 (3) N4—C9—C10 122.1 (2)
H1—N3—H2 124 (4) N4—C9—C7 114.3 (2)
C13—N4—C9 118.5 (2) C10—C9—C7 123.6 (2)
C13—N4—Cu1 128.30 (19) C9—C10—C11 118.7 (3)
C9—N4—Cu1 113.11 (16) C9—C10—H10 120.7
N6—N5—Cu1 124.8 (2) C11—C10—H10 120.7
N7—N6—N5 177.3 (3) C12—C11—C10 119.1 (3)
C6—C1—C2 119.1 (2) C12—C11—H11 120.4
C6—C1—C7 120.8 (2) C10—C11—H11 120.4
C2—C1—C7 120.1 (2) C11—C12—C13 119.4 (3)
C1—C2—C3 120.4 (3) C11—C12—H12 120.3
C1—C2—H2A 119.8 C13—C12—H12 120.3
C3—C2—H2A 119.8 N4—C13—C12 122.2 (3)
C4—C3—C2 119.8 (3) N4—C13—H13 118.9
C4—C3—H3 120.1 C12—C13—H13 118.9
N5—Cu1—S1—C8 −167.21 (13) C2—C1—C6—C5 2.2 (4)
N1—Cu1—S1—C8 11.35 (12) C7—C1—C6—C5 −175.2 (3)
N4—Cu1—S1—C8 48.2 (2) N2—N1—C7—C9 −176.1 (2)
N5i—Cu1—S1—C8 −79.13 (11) Cu1—N1—C7—C9 −0.5 (3)
N4—Cu1—N1—C7 1.37 (19) N2—N1—C7—C1 3.0 (4)
S1—Cu1—N1—C7 169.6 (2) Cu1—N1—C7—C1 178.59 (18)
N5i—Cu1—N1—C7 −87.6 (2) C6—C1—C7—N1 65.7 (4)
N4—Cu1—N1—N2 176.9 (2) C2—C1—C7—N1 −111.7 (3)
S1—Cu1—N1—N2 −14.88 (19) C6—C1—C7—C9 −115.3 (3)
N5i—Cu1—N1—N2 87.9 (2) C2—C1—C7—C9 67.3 (3)
C7—N1—N2—C8 −173.5 (2) N1—N2—C8—N3 −178.8 (3)
Cu1—N1—N2—C8 11.1 (3) N1—N2—C8—S1 2.6 (4)
N5—Cu1—N4—C13 −0.4 (2) Cu1—S1—C8—N2 −11.5 (3)
N1—Cu1—N4—C13 −177.8 (3) Cu1—S1—C8—N3 170.0 (3)
S1—Cu1—N4—C13 144.9 (2) C13—N4—C9—C10 −0.3 (4)
N5i—Cu1—N4—C13 −85.9 (2) Cu1—N4—C9—C10 −176.6 (2)
N5—Cu1—N4—C9 175.44 (18) C13—N4—C9—C7 178.6 (2)
N1—Cu1—N4—C9 −1.97 (17) Cu1—N4—C9—C7 2.2 (3)
S1—Cu1—N4—C9 −39.2 (3) N1—C7—C9—N4 −1.2 (3)
N5i—Cu1—N4—C9 89.97 (18) C1—C7—C9—N4 179.7 (2)
N4—Cu1—N5—N6 155.8 (3) N1—C7—C9—C10 177.6 (3)
S1—Cu1—N5—N6 −13.0 (3) C1—C7—C9—C10 −1.5 (4)
N5i—Cu1—N5—N6 −115.3 (3) N4—C9—C10—C11 0.6 (4)
C6—C1—C2—C3 −2.0 (4) C7—C9—C10—C11 −178.1 (3)
C7—C1—C2—C3 175.5 (3) C9—C10—C11—C12 0.0 (5)
C1—C2—C3—C4 −0.5 (5) C10—C11—C12—C13 −0.9 (5)
C2—C3—C4—C5 2.6 (5) C9—N4—C13—C12 −0.7 (4)
C3—C4—C5—C6 −2.3 (5) Cu1—N4—C13—C12 175.0 (2)
C4—C5—C6—C1 −0.1 (5) C11—C12—C13—N4 1.3 (5)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H1···N2ii 0.87 (1) 2.22 (1) 3.075 (3) 168 (4)

Symmetry code: (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5611).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Casas, J. S., Castellano, E. E., Ellena, J., Tasende, M. S. G., Sánchez, A., Sordo, J. & Vidarte, M. J. (2003). Inorg. Chem. 42, 2584–2595. [DOI] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035751/xu5611sup1.cif

e-68-m1195-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035751/xu5611Isup2.hkl

e-68-m1195-Isup2.hkl (183.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES