Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 23;68(Pt 9):m1202–m1203. doi: 10.1107/S1600536812035891

Tricarbonyl[tris(1-methyl-1H-imidazol-2-yl-κN 3)methanol]manganese(I) trifluoromethanesulfonate

Guido J Reiss a, Peter C Kunz b,*
PMCID: PMC3435617  PMID: 22969490

Abstract

In the title compound, [Mn(C13H16N6O)(CO)3](CF3O3S), the MnI atom has a slightly distorted octa­hedral geometry. The three CO ligands have C—Mn—C angles in the range 89.44 (10)–92.31 (9)°, while the three N atoms of the tripodal ligand form significantly smaller N—Mn—N angles of 82.76 (2)–85.51 (6)°. The three N atoms of the tripodal ligand and the three carbonyl ligands coordinate facially. In the crystal, the trifluoro­methane­sulfonate counter anion is connected by a medium-strength O—H⋯O hydrogen bond to the hydroxyl group of the manganese complex.

Related literature  

For the structures of related complexes, see: Niesel et al. (2008); Herrick et al. (2008); Kunz et al. (2009). For details of the chemistry of tris­(imidazolyl-2-yl)carbinol ligands, see: Stamatatos et al. (2009); Breslow et al. (1983); Tang et al. (1978). For details of the chemistry of Mn(CO)3 complexes, see: Kreiter et al. (1994, 1995); Brückmann et al. (2011); Huber et al. (2012); Berends & Kurz (2012).graphic file with name e-68-m1202-scheme1.jpg

Experimental  

Crystal data  

  • [Mn(CO)3(C13H16N6O)](CF3O3S)

  • M r = 560.36

  • Monoclinic, Inline graphic

  • a = 12.16673 (18) Å

  • b = 15.5692 (2) Å

  • c = 12.6240 (2) Å

  • β = 104.6721 (16)°

  • V = 2313.33 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 290 K

  • 0.80 × 0.74 × 0.40 mm

Data collection  

  • Oxford Xcalibur diffractometer with Eos detector

  • Absorption correction: multi-scan CrysAlis PRO (Oxford Diffraction, 2009) T min = 0.805, T max = 1.000

  • 95191 measured reflections

  • 6746 independent reflections

  • 5888 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.084

  • S = 1.06

  • 6746 reflections

  • 330 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035891/pk2428sup1.cif

e-68-m1202-sup1.cif (30.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035891/pk2428Isup2.hkl

e-68-m1202-Isup2.hkl (330.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5 0.72 (2) 1.98 (2) 2.694 (2) 175 (2)

Acknowledgments

This publication was funded by the German Research Foundation (DFG) and Heinrich-Heine-Universität Düsseldorf under the funding programme Open Access Publishing.

supplementary crystallographic information

Comment

The chemistry of manganese carbonyl complexes is of significant interest for at least two reasons. On the one hand there is a long standing interest in simple organometallic Mn(CO)3 complexes, reflected by more than 2200 structures reported in the CCDC. On the other hand they are known to undergo a plethora of photochemical reactions, e.g. photochemical mediated cycloaddition reactions yielding complex organic ligand systems coordinated to a manganese center (e.g. Kreiter et al., 1994, 1995). Recently, manganese tricarbonyl complexes of tripodal N,N,N-ligands, like tris(imidazolyl)carbinols (Breslow et al., 1983; Tang et al. 1978), have been shown to be photoinduced CO-releasing molecules (photoCORMs). The CO-release characteristics, e.g. the rate and half-life time for the release, are dependent on the ligands used to stabilize the Mn(CO)3 core (Huber et al., 2012; Berends & Kurz, 2012; Brückmann et al., 2011; Kunz et al., 2009; Niesel et al., 2008). The manganese complex cation shows N,N,N-coordination in the solid state, which has also been observed for the corresponding rhenium(I) complex, in which the carbinol OH has been methylated (Herrick et al., 2008). The spectroscopic data in solution (IR and NMR, Huber et al., 2012) of the title compound are in accord with C3v symmetry and therefore with the N,N,N-coordination found in the solid state. This indicates that coordination of the carbinol OH group is not favored, as found in other carbinol ligands (Stamatatos et al., 2009; Herrick et al., 2008).

The asymmetric unit of the title structure, consisting of a complex manganese cation and the trifluoromethanesulfonate counteranion, is shown in Fig. 1. The coordination polyhedron around the central manganese(I) atom is slightly distorted from octahedral symmetry. All Mn—N and Mn—C distances are in the expected range for a manganese(I) tricarbonyl complex. The three angles between the three CO ligands are near 90°, which is typical for the Mn(CO)3 fragment (e.g. Kreiter et al., 1995). The three angles N—Mn—N are significantly smaller than 90° (82.76 (2) to 85.51 (6)°), which is a result of the bite angle the tripodal ligand. The complex cation is connected to the trifluoromethanesulfonate counter-anion by only one O—H···O hydrogen bond, between the carbinol group of the complex cation and one of the O atoms of the trifluoromethanesulfonate anion.

Experimental

The synthesis of the title compound was performed as recently reported (Huber et al. 2012). The title compound was crystallized from methanol solution by slow vapor diffusion of diethyl ether to yield yellow crystals. 1H NMR (200 MHz, [D4]methanol): δ = 4.12 (s, 9 H, NCH3), 7.17 (d, 3JH,H = 1.4 Hz, 3 H, Him), 7.42 (d, 3JH,H = 1.4 Hz, 3 H, Him) p.p.m. 13C{1H} NMR (125 MHz, [D4]methanol): δ = 37.0, 78.4, 126.1, 132.0, 145.1 p.p.m. ESI-MS (MeOH): m/z (%) = 411.1 (36) [M]+, 354.9 (12) [M-2CO]+, 327.3 (100) [M-3CO]+. C17H16F3MnN6O7S (560.3): calcd. C 36.44, H 2.88, N 15.00; found C 36.75, H 2.55, N 14.86. IR (KBr): ν = 2044, 1936, 1907 cm-1. IR (CH2Cl2): ν = 2037, 1935 cm-1.

Refinement

All H-atom positions were identified in difference Fourier maps. In the later stages of refinement the H atoms of the methyl groups and the H atoms of the rings of the tripodal ligand were refined using a riding model. The Uiso values of the methyl H atoms were set to 1.5 times the equivalent isotropic displacement parameter of the C atom they are attached to. The Uiso values of the H atoms at the rings of the tripodal ligand were refined freely. The coordinates and the Uiso value of the H atom of the carbinol function were refined freely.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound.

Crystal data

[Mn(C13H16N6O)(CO)3]·CF3O3S F(000) = 1136
Mr = 560.36 Dx = 1.609 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 50962 reflections
a = 12.16673 (18) Å θ = 3.0–31.7°
b = 15.5692 (2) Å µ = 0.74 mm1
c = 12.6240 (2) Å T = 290 K
β = 104.6721 (16)° Block, yellow
V = 2313.33 (6) Å3 0.80 × 0.74 × 0.40 mm
Z = 4

Data collection

Oxford Xcalibur with Eos detector? diffractometer 6746 independent reflections
Radiation source: fine-focus sealed tube 5888 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 16.2711 pixels mm-1 θmax = 30.0°, θmin = 3.0°
ω scans h = −17→17
Absorption correction: multi-scan CrysAlis PRO (Oxford Diffraction, 2009) k = −21→21
Tmin = 0.805, Tmax = 1.000 l = −17→17
95191 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.015P)2 + 2.P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
6746 reflections Δρmax = 0.37 e Å3
330 parameters Δρmin = −0.51 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00166 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.10254 (2) 0.295254 (17) 0.16048 (2) 0.03656 (8)
O1 0.35083 (11) 0.49536 (9) 0.35279 (11) 0.0412 (3)
H1 0.4054 (19) 0.4867 (14) 0.3424 (18) 0.044 (6)*
N1 0.19095 (13) 0.38711 (10) 0.10358 (12) 0.0389 (3)
C1 0.27555 (12) 0.43432 (10) 0.29428 (13) 0.0315 (3)
O2 −0.11219 (16) 0.32763 (15) −0.00447 (16) 0.0896 (6)
N2 0.07555 (11) 0.39388 (10) 0.26080 (12) 0.0354 (3)
C2 0.25808 (13) 0.44160 (10) 0.17035 (14) 0.0333 (3)
O3 −0.02144 (16) 0.17630 (12) 0.27000 (15) 0.0730 (5)
N3 0.25271 (12) 0.27691 (9) 0.27527 (12) 0.0370 (3)
C3 0.18358 (19) 0.41522 (14) −0.00092 (16) 0.0503 (5)
H3 0.1420 0.3890 −0.0647 0.060 (7)*
O4 0.16020 (19) 0.15860 (12) 0.02292 (16) 0.0834 (6)
N4 0.29270 (13) 0.50443 (10) 0.11247 (13) 0.0416 (3)
C4 0.2463 (2) 0.48683 (15) 0.00382 (17) 0.0542 (5)
H4 0.2563 0.5185 −0.0555 0.070 (8)*
N5 0.11867 (12) 0.50560 (9) 0.37074 (12) 0.0369 (3)
C5 0.35957 (19) 0.58200 (14) 0.1479 (2) 0.0597 (6)
H5A 0.3280 0.6129 0.1991 0.090*
H5B 0.3579 0.6177 0.0855 0.090*
H5C 0.4367 0.5664 0.1823 0.090*
N6 0.38841 (12) 0.31476 (10) 0.41865 (13) 0.0418 (3)
C6 0.15755 (13) 0.44636 (10) 0.31180 (13) 0.0314 (3)
C7 −0.02132 (14) 0.42127 (13) 0.28780 (16) 0.0434 (4)
H7 −0.0929 0.3967 0.2634 0.051 (6)*
C8 0.00426 (15) 0.48947 (13) 0.35522 (16) 0.0452 (4)
H8 −0.0459 0.5200 0.3857 0.052 (6)*
C9 0.18119 (19) 0.57170 (14) 0.44384 (18) 0.0539 (5)
H9A 0.2387 0.5451 0.5008 0.081*
H9B 0.1297 0.6031 0.4758 0.081*
H9C 0.2163 0.6103 0.4030 0.081*
C10 0.30911 (13) 0.34236 (11) 0.32977 (13) 0.0332 (3)
C11 0.30031 (17) 0.20377 (13) 0.32892 (18) 0.0476 (4)
H11 0.2788 0.1478 0.3077 0.051 (6)*
C12 0.38308 (18) 0.22648 (14) 0.41719 (18) 0.0522 (5)
H12 0.4282 0.1894 0.4678 0.064 (7)*
C13 0.46166 (19) 0.36356 (16) 0.50876 (17) 0.0602 (6)
H13A 0.5207 0.3913 0.4834 0.090*
H13B 0.4950 0.3252 0.5677 0.090*
H13C 0.4172 0.4061 0.5342 0.090*
C14 −0.02874 (18) 0.31700 (15) 0.05903 (18) 0.0533 (5)
C15 0.13726 (19) 0.21210 (14) 0.07542 (17) 0.0511 (5)
C16 0.02768 (17) 0.22112 (13) 0.22707 (17) 0.0473 (4)
S1 0.61262 (4) 0.42786 (4) 0.23478 (5) 0.05368 (14)
F1 0.7020 (2) 0.30397 (12) 0.36557 (18) 0.1337 (10)
F2 0.7028 (2) 0.28311 (15) 0.2001 (2) 0.1324 (9)
F3 0.55074 (19) 0.26955 (13) 0.24881 (19) 0.1151 (7)
O5 0.55176 (13) 0.45179 (12) 0.31485 (14) 0.0660 (4)
O6 0.72136 (14) 0.46749 (12) 0.25442 (18) 0.0790 (6)
O7 0.54709 (19) 0.42639 (18) 0.12357 (16) 0.1040 (8)
C17 0.6452 (2) 0.31564 (18) 0.2657 (3) 0.0738 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.03490 (13) 0.03877 (14) 0.03562 (13) −0.00670 (10) 0.00821 (10) −0.00727 (10)
O1 0.0303 (6) 0.0422 (7) 0.0499 (7) −0.0083 (5) 0.0082 (5) −0.0103 (6)
N1 0.0442 (8) 0.0417 (8) 0.0332 (7) −0.0027 (6) 0.0141 (6) −0.0036 (6)
C1 0.0252 (7) 0.0340 (8) 0.0351 (8) −0.0031 (6) 0.0074 (6) −0.0034 (6)
O2 0.0612 (11) 0.1112 (17) 0.0761 (13) 0.0058 (11) −0.0201 (9) −0.0129 (12)
N2 0.0264 (6) 0.0435 (8) 0.0372 (7) −0.0023 (5) 0.0095 (5) −0.0053 (6)
C2 0.0310 (7) 0.0340 (8) 0.0373 (8) 0.0012 (6) 0.0131 (6) 0.0011 (6)
O3 0.0760 (11) 0.0740 (12) 0.0726 (11) −0.0295 (9) 0.0254 (9) 0.0044 (9)
N3 0.0336 (7) 0.0352 (7) 0.0427 (8) −0.0006 (5) 0.0105 (6) 0.0001 (6)
C3 0.0645 (13) 0.0548 (12) 0.0345 (9) −0.0001 (10) 0.0178 (9) −0.0020 (8)
O4 0.1109 (16) 0.0656 (11) 0.0833 (13) −0.0103 (11) 0.0426 (12) −0.0355 (10)
N4 0.0414 (8) 0.0384 (8) 0.0477 (8) −0.0001 (6) 0.0160 (7) 0.0078 (6)
C4 0.0674 (13) 0.0569 (12) 0.0432 (10) 0.0030 (10) 0.0234 (10) 0.0109 (9)
N5 0.0364 (7) 0.0379 (7) 0.0371 (7) 0.0036 (6) 0.0104 (6) −0.0036 (6)
C5 0.0559 (12) 0.0425 (11) 0.0765 (15) −0.0102 (9) 0.0092 (11) 0.0172 (10)
N6 0.0339 (7) 0.0481 (9) 0.0410 (8) −0.0008 (6) 0.0049 (6) 0.0074 (7)
C6 0.0279 (7) 0.0362 (8) 0.0304 (7) 0.0006 (6) 0.0081 (6) −0.0021 (6)
C7 0.0271 (7) 0.0551 (11) 0.0496 (10) 0.0005 (7) 0.0130 (7) −0.0011 (8)
C8 0.0361 (9) 0.0535 (11) 0.0503 (10) 0.0088 (8) 0.0190 (8) −0.0022 (9)
C9 0.0560 (12) 0.0498 (11) 0.0540 (12) 0.0018 (9) 0.0103 (9) −0.0200 (9)
C10 0.0265 (7) 0.0385 (8) 0.0351 (8) −0.0007 (6) 0.0085 (6) 0.0012 (6)
C11 0.0474 (10) 0.0362 (9) 0.0606 (12) 0.0013 (8) 0.0165 (9) 0.0071 (8)
C12 0.0461 (10) 0.0480 (11) 0.0603 (12) 0.0050 (9) 0.0095 (9) 0.0173 (9)
C13 0.0546 (12) 0.0722 (15) 0.0428 (11) −0.0089 (11) −0.0080 (9) 0.0071 (10)
C14 0.0488 (11) 0.0585 (12) 0.0485 (11) −0.0059 (9) 0.0046 (9) −0.0109 (9)
C15 0.0586 (12) 0.0473 (11) 0.0498 (11) −0.0125 (9) 0.0180 (9) −0.0102 (9)
C16 0.0444 (10) 0.0491 (11) 0.0464 (10) −0.0101 (8) 0.0080 (8) −0.0088 (8)
S1 0.0363 (2) 0.0724 (4) 0.0550 (3) 0.0099 (2) 0.0165 (2) 0.0156 (3)
F1 0.190 (2) 0.0667 (11) 0.1016 (15) 0.0248 (13) −0.0427 (15) 0.0090 (10)
F2 0.1315 (18) 0.1085 (16) 0.174 (2) 0.0228 (14) 0.0696 (17) −0.0448 (16)
F3 0.1188 (16) 0.0877 (13) 0.1425 (18) −0.0411 (12) 0.0400 (14) −0.0251 (13)
O5 0.0524 (9) 0.0804 (12) 0.0741 (11) 0.0120 (8) 0.0325 (8) 0.0101 (9)
O6 0.0489 (9) 0.0765 (12) 0.1204 (16) −0.0028 (8) 0.0379 (10) 0.0115 (11)
O7 0.0862 (14) 0.161 (2) 0.0569 (11) 0.0263 (15) 0.0037 (10) 0.0251 (13)
C17 0.0713 (16) 0.0631 (15) 0.0827 (19) −0.0039 (13) 0.0116 (14) −0.0165 (14)

Geometric parameters (Å, º)

Mn1—C15 1.799 (2) N5—C8 1.379 (2)
Mn1—C16 1.804 (2) N5—C9 1.461 (2)
Mn1—C14 1.808 (2) C5—H5A 0.9600
Mn1—N1 2.0273 (15) C5—H5B 0.9600
Mn1—N3 2.0441 (15) C5—H5C 0.9600
Mn1—N2 2.0688 (14) N6—C10 1.351 (2)
O1—C1 1.3946 (19) N6—C12 1.376 (3)
O1—H1 0.72 (2) N6—C13 1.467 (3)
N1—C2 1.322 (2) C7—C8 1.347 (3)
N1—C3 1.371 (2) C7—H7 0.9300
C1—C6 1.519 (2) C8—H8 0.9300
C1—C10 1.525 (2) C9—H9A 0.9600
C1—C2 1.529 (2) C9—H9B 0.9600
O2—C14 1.135 (3) C9—H9C 0.9600
N2—C6 1.324 (2) C11—C12 1.346 (3)
N2—C7 1.375 (2) C11—H11 0.9300
C2—N4 1.351 (2) C12—H12 0.9300
O3—C16 1.141 (2) C13—H13A 0.9600
N3—C10 1.320 (2) C13—H13B 0.9600
N3—C11 1.376 (2) C13—H13C 0.9600
C3—C4 1.343 (3) S1—O6 1.4234 (17)
C3—H3 0.9300 S1—O7 1.428 (2)
O4—C15 1.142 (3) S1—O5 1.4449 (16)
N4—C4 1.372 (3) S1—C17 1.812 (3)
N4—C5 1.462 (3) F1—C17 1.288 (3)
C4—H4 0.9300 F2—C17 1.314 (3)
N5—C6 1.344 (2) F3—C17 1.325 (3)
C15—Mn1—C16 92.31 (9) H5A—C5—H5C 109.5
C15—Mn1—C14 90.62 (10) H5B—C5—H5C 109.5
C16—Mn1—C14 89.44 (10) C10—N6—C12 106.58 (16)
C15—Mn1—N1 94.03 (8) C10—N6—C13 130.15 (17)
C16—Mn1—N1 172.75 (7) C12—N6—C13 123.03 (17)
C14—Mn1—N1 93.99 (9) N2—C6—N5 111.42 (14)
C15—Mn1—N3 91.13 (8) N2—C6—C1 118.49 (14)
C16—Mn1—N3 92.66 (8) N5—C6—C1 130.06 (14)
C14—Mn1—N3 177.21 (8) C8—C7—N2 109.01 (16)
N1—Mn1—N3 83.72 (6) C8—C7—H7 125.5
C15—Mn1—N2 175.58 (8) N2—C7—H7 125.5
C16—Mn1—N2 90.71 (8) C7—C8—N5 107.26 (15)
C14—Mn1—N2 92.63 (8) C7—C8—H8 126.4
N1—Mn1—N2 82.76 (6) N5—C8—H8 126.4
N3—Mn1—N2 85.51 (6) N5—C9—H9A 109.5
C1—O1—H1 106.7 (18) N5—C9—H9B 109.5
C2—N1—C3 106.73 (16) H9A—C9—H9B 109.5
C2—N1—Mn1 121.61 (11) N5—C9—H9C 109.5
C3—N1—Mn1 130.91 (14) H9A—C9—H9C 109.5
O1—C1—C6 110.92 (13) H9B—C9—H9C 109.5
O1—C1—C10 113.15 (13) N3—C10—N6 110.77 (15)
C6—C1—C10 105.41 (13) N3—C10—C1 120.42 (14)
O1—C1—C2 113.20 (13) N6—C10—C1 128.64 (15)
C6—C1—C2 104.38 (12) C12—C11—N3 108.87 (18)
C10—C1—C2 109.14 (13) C12—C11—H11 125.6
C6—N2—C7 106.01 (14) N3—C11—H11 125.6
C6—N2—Mn1 122.61 (11) C11—C12—N6 107.24 (17)
C7—N2—Mn1 131.37 (12) C11—C12—H12 126.4
N1—C2—N4 110.29 (15) N6—C12—H12 126.4
N1—C2—C1 120.54 (14) N6—C13—H13A 109.5
N4—C2—C1 128.73 (15) N6—C13—H13B 109.5
C10—N3—C11 106.49 (15) H13A—C13—H13B 109.5
C10—N3—Mn1 120.98 (12) N6—C13—H13C 109.5
C11—N3—Mn1 130.84 (13) H13A—C13—H13C 109.5
C4—C3—N1 108.91 (18) H13B—C13—H13C 109.5
C4—C3—H3 125.5 O2—C14—Mn1 177.5 (2)
N1—C3—H3 125.5 O4—C15—Mn1 178.9 (2)
C2—N4—C4 106.87 (16) O3—C16—Mn1 177.9 (2)
C2—N4—C5 131.21 (17) O6—S1—O7 116.17 (14)
C4—N4—C5 121.81 (17) O6—S1—O5 112.63 (12)
C3—C4—N4 107.19 (17) O7—S1—O5 115.74 (12)
C3—C4—H4 126.4 O6—S1—C17 103.75 (12)
N4—C4—H4 126.4 O7—S1—C17 103.49 (15)
C6—N5—C8 106.29 (14) O5—S1—C17 102.74 (13)
C6—N5—C9 129.29 (15) F1—C17—F2 108.8 (3)
C8—N5—C9 124.30 (16) F1—C17—F3 108.1 (3)
N4—C5—H5A 109.5 F2—C17—F3 105.6 (2)
N4—C5—H5B 109.5 F1—C17—S1 112.37 (19)
H5A—C5—H5B 109.5 F2—C17—S1 111.0 (2)
N4—C5—H5C 109.5 F3—C17—S1 110.8 (2)
C15—Mn1—N1—C2 −135.39 (15) C7—N2—C6—C1 −177.73 (15)
C14—Mn1—N1—C2 133.71 (15) Mn1—N2—C6—C1 1.0 (2)
N3—Mn1—N1—C2 −44.69 (14) C8—N5—C6—N2 −0.3 (2)
N2—Mn1—N1—C2 41.56 (13) C9—N5—C6—N2 175.87 (18)
C15—Mn1—N1—C3 55.91 (19) C8—N5—C6—C1 177.59 (17)
C14—Mn1—N1—C3 −35.00 (19) C9—N5—C6—C1 −6.2 (3)
N3—Mn1—N1—C3 146.60 (18) O1—C1—C6—N2 179.32 (15)
N2—Mn1—N1—C3 −127.15 (18) C10—C1—C6—N2 −57.86 (18)
C16—Mn1—N2—C6 132.48 (15) C2—C1—C6—N2 57.08 (19)
C14—Mn1—N2—C6 −138.05 (15) O1—C1—C6—N5 1.5 (2)
N1—Mn1—N2—C6 −44.36 (14) C10—C1—C6—N5 124.35 (18)
N3—Mn1—N2—C6 39.86 (14) C2—C1—C6—N5 −120.71 (18)
C16—Mn1—N2—C7 −49.16 (17) C6—N2—C7—C8 −0.4 (2)
C14—Mn1—N2—C7 40.31 (18) Mn1—N2—C7—C8 −178.98 (13)
N1—Mn1—N2—C7 134.01 (17) N2—C7—C8—N5 0.2 (2)
N3—Mn1—N2—C7 −141.77 (17) C6—N5—C8—C7 0.1 (2)
C3—N1—C2—N4 0.9 (2) C9—N5—C8—C7 −176.38 (18)
Mn1—N1—C2—N4 −170.19 (11) C11—N3—C10—N6 −2.23 (19)
C3—N1—C2—C1 173.97 (15) Mn1—N3—C10—N6 164.50 (11)
Mn1—N1—C2—C1 2.9 (2) C11—N3—C10—C1 −178.01 (15)
O1—C1—C2—N1 178.58 (15) Mn1—N3—C10—C1 −11.3 (2)
C6—C1—C2—N1 −60.70 (19) C12—N6—C10—N3 1.9 (2)
C10—C1—C2—N1 51.60 (19) C13—N6—C10—N3 −172.51 (19)
O1—C1—C2—N4 −9.8 (2) C12—N6—C10—C1 177.26 (17)
C6—C1—C2—N4 110.93 (18) C13—N6—C10—C1 2.8 (3)
C10—C1—C2—N4 −136.77 (17) O1—C1—C10—N3 −173.45 (14)
C15—Mn1—N3—C10 143.22 (14) C6—C1—C10—N3 65.17 (18)
C16—Mn1—N3—C10 −124.41 (14) C2—C1—C10—N3 −46.45 (19)
N1—Mn1—N3—C10 49.29 (13) O1—C1—C10—N6 11.6 (2)
N2—Mn1—N3—C10 −33.90 (13) C6—C1—C10—N6 −109.79 (18)
C15—Mn1—N3—C11 −53.69 (18) C2—C1—C10—N6 138.60 (17)
C16—Mn1—N3—C11 38.68 (18) C10—N3—C11—C12 1.7 (2)
N1—Mn1—N3—C11 −147.62 (17) Mn1—N3—C11—C12 −163.23 (14)
N2—Mn1—N3—C11 129.18 (17) N3—C11—C12—N6 −0.5 (2)
C2—N1—C3—C4 −0.2 (2) C10—N6—C12—C11 −0.8 (2)
Mn1—N1—C3—C4 169.76 (15) C13—N6—C12—C11 174.13 (19)
N1—C2—N4—C4 −1.3 (2) O6—S1—C17—F1 60.3 (3)
C1—C2—N4—C4 −173.59 (17) O7—S1—C17—F1 −178.0 (2)
N1—C2—N4—C5 174.82 (19) O5—S1—C17—F1 −57.2 (3)
C1—C2—N4—C5 2.5 (3) O6—S1—C17—F2 −61.8 (2)
N1—C3—C4—N4 −0.6 (2) O7—S1—C17—F2 59.9 (2)
C2—N4—C4—C3 1.1 (2) O5—S1—C17—F2 −179.2 (2)
C5—N4—C4—C3 −175.44 (19) O6—S1—C17—F3 −178.7 (2)
C7—N2—C6—N5 0.5 (2) O7—S1—C17—F3 −57.0 (2)
Mn1—N2—C6—N5 179.18 (11) O5—S1—C17—F3 63.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O5 0.72 (2) 1.98 (2) 2.694 (2) 175 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2428).

References

  1. Berends, H.-M. & Kurz, P. (2012). Inorg. Chim. Acta, 380, 141–147.
  2. Brandenburg, K. (2011). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Breslow, R., Hunt, J. T., Smiley, R. & Tarnowski, T. (1983). J. Am. Chem. Soc. 105, 5337–5342.
  4. Brückmann, N. E., Wahl, M., Reiss, G. J., Kohns, M., Wätjen, W. & Kunz, P. C. (2011). Eur. J. Inorg. Chem. pp. 4571–4577.
  5. Herrick, R. S., Ziegler, C., Jameson, D. & Aquina, C. (2008). Dalton Trans. pp. 3605–3609. [DOI] [PubMed]
  6. Huber, W., Linder, R., Niesel, J., Schatzschneider, U., Spingler, B. & Kunz, P. C. (2012). Eur. J. Inorg. Chem. pp. 3140–3146.
  7. Kreiter, C. G., Fiedler, C., Frank, W. & Reiss, G. J. (1995). J. Organomet. Chem. 490, 133–141.
  8. Kreiter, C. G., Koch, E.-C., Frank, W. & Reiss, G. J. (1994). Inorg. Chim. Acta, 220, 77–83.
  9. Kunz, P. C., Huber, W., Rojas, A., Schatzschneider, U. & Spingler, B. (2009). Eur. J. Inorg. Chem. pp. 5358–5366.
  10. Niesel, J., Pinto, A., Peindy N’Dongo, H. W., Merz, K., Ott, I., Gust, R. & Schatzschneider, U. (2008). Chem. Commun. pp. 1798–1800. [DOI] [PubMed]
  11. Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd., Oxford, UK.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Stamatatos, T. C., Efthymiou, C. G., Stoumpos, C. C. & Perlepes, S. P. (2009). Eur. J. Inorg. Chem. pp. 3361–3391.
  14. Tang, C. C., Davalian, D., Huang, P. & Breslow, R. (1978). J. Am. Chem. Soc. 100, 3918–3922.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035891/pk2428sup1.cif

e-68-m1202-sup1.cif (30.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035891/pk2428Isup2.hkl

e-68-m1202-Isup2.hkl (330.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES