Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 25;68(Pt 9):m1204–m1205. doi: 10.1107/S1600536812036215

Poly[[μ-(3-amino­pyridine)-κ2 N:N′-μ-chlorido-chlorido(N,N′-dimethyl­formamide-κO)nickel(II)] N,N′-dimethyl­formamide monosolvate]

Chun-Wei Yeh a, Chi-Hsiung Jou b, Chi-Hui Tsou c, Maw-Cherng Suen d,*
PMCID: PMC3435618  PMID: 22969491

Abstract

The title compound, {[NiCl2(C5H6N2)(C3H7NO)]·C3H7NO}n, is a two-dimensional polymer in which the NiII atom is coordinated by two N atoms from two 3-amino­pyridine ligands, one O atom from a dimethyl­formamide (DMF) group, one terminal Cl and two bridging Cl atoms in a distorted octa­hedral geometry. The NiII atoms are bridged by the 3-amino­pyridine ligands [Ni⋯N = 6.7048 (3) Å] and Cl atoms [Ni⋯N = 3.5698 (3) Å], forming (4,4) two-dimensional nets. The DMF solvent mol­ecule and the non-bridged Cl ions participate in N—H⋯O and N—H⋯Cl hydrogen bonds with the amino groups.

Related literature  

For background to coordination polymers, see: Kitagawa et al. (2004); Chiang et al. (2008); Yeh et al. (2008, 2009); Hsu et al. (2009). For related 3-amino­pyridine complexes, see: Zhu & Kitagawa (2002); Lah & Leban (2005, 2006); Kochel (2006); Wu et al. (2005); Qian & Huang (2006). graphic file with name e-68-m1204-scheme1.jpg

Experimental  

Crystal data  

  • [NiCl2(C5H6N2)(C3H7NO)]·C3H7NO

  • M r = 369.92

  • Monoclinic, Inline graphic

  • a = 10.3684 (2) Å

  • b = 15.0571 (3) Å

  • c = 10.0976 (2) Å

  • β = 103.832 (2)°

  • V = 1530.70 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 293 K

  • 0.38 × 0.30 × 0.18 mm

Data collection  

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.628, T max = 1.000

  • 6140 measured reflections

  • 2748 independent reflections

  • 2333 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.058

  • S = 1.04

  • 2748 reflections

  • 193 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036215/xu5609sup1.cif

e-68-m1204-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036215/xu5609Isup2.hkl

e-68-m1204-Isup2.hkl (134.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2NA⋯Cl2i 0.89 (2) 2.60 (2) 3.4869 (16) 176.4 (1)
N2—H2NB⋯O2ii 0.84 (2) 2.11 (2) 2.925 (2) 173.3 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to the Taoyuan Innovation Institute of Technology for supporting this work.

supplementary crystallographic information

Comment

The synthesis of metal coordination polymers has been a subject of intense research due to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kitagawa et al., 2004). Roles of anion, solvent and ligand comformations in self-assembly of coordination complexes containing polydentate nitrogen ligands are very intersting (Chiang et al., 2008; Yeh et al., 2008; Hsu et al., 2009; Yeh et al., 2009). In the past, the 3-aminopyridine ligands have been subjected to many studies of its coordination ability to structure chemistry (Zhu et al., 2002; Lah & Leban, 2005; Lah & Leban, 2006; Kochel, 2006; Wu et al., 2005; Qian et al., 2006). The Ni2+ cations are coordinated with two N atoms from two 3-aminopyridine (L) ligands, one O atom from dimethylformamide group, one terminal Cl and two bridging Cl atoms (Fig. 1). The Ni···Ni distances separated by the bridging Cl- anions and L groups are 3.5698 (3) and 6.7048 (3) Å, while the unit of dinuclear [Ni2Cl2] cores are forming (4,4) polymeric nets (Fig. 2). The co-crystallized DMF molecules and terminal Cl- ions are interacted with the amino hydrogen atoms forming N—H···O and N—H···Cl inter– and intra–molecular hydrogen bonds (Tab. 1).

Experimental

An aquous solution (5.0 ml) of nickel chloride (1.0 mmol) was layered carefully over a mixed CH3OH/DMF solution (5.0 ml, 1:1) of 3-aminopyridine (1.0 mmol) in a tube. Green crystals were obtained after several weeks. These were washed with methanol and collected in 72.8% yield.

Refinement

H atoms bound to C atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 - 0.96 A, and with Uiso(H) = 1.2 or 1.5 Ueq(C). The amine hydrogen atoms (H2NA and H2NB) was freely refined.

Figures

Fig. 1.

Fig. 1.

A portion of the two-dimensional grid. Ellipsoids are drawn at 30% probability level. [Symmetry codes: (i) x,-y + 3/2,z + 1/2;(ii) -x + 1,-y + 1,-z + 1; (iii) x,-y + 3/2,z - 1/2.]

Fig. 2.

Fig. 2.

The view shows the two-dimensional pleated (4,4) net.

Crystal data

[NiCl2(C5H6N2)(C3H7NO)]·C3H7NO F(000) = 768
Mr = 369.92 Dx = 1.605 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4748 reflections
a = 10.3684 (2) Å θ = 3.2–29.0°
b = 15.0571 (3) Å µ = 1.62 mm1
c = 10.0976 (2) Å T = 293 K
β = 103.832 (2)° Plate, green
V = 1530.70 (5) Å3 0.38 × 0.30 × 0.18 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer 2748 independent reflections
Radiation source: fine-focus sealed tube 2333 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
phi and ω scans θmax = 25.2°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→12
Tmin = 0.628, Tmax = 1.000 k = −16→18
6140 measured reflections l = −12→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0322P)2] where P = (Fo2 + 2Fc2)/3
2748 reflections (Δ/σ)max = 0.001
193 parameters Δρmax = 0.70 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni 0.41415 (2) 0.603502 (16) 0.48905 (2) 0.00775 (9)
C1 0.38923 (19) 0.80038 (13) 0.50209 (19) 0.0102 (4)
H1A 0.3489 0.7849 0.5718 0.012*
C2 0.4014 (2) 0.88919 (13) 0.4737 (2) 0.0125 (4)
H2A 0.3717 0.9325 0.5251 0.015*
C3 0.4579 (2) 0.91299 (13) 0.3683 (2) 0.0120 (4)
H3A 0.4655 0.9725 0.3466 0.014*
C4 0.50335 (19) 0.84671 (13) 0.29533 (19) 0.0086 (4)
C5 0.49098 (19) 0.75896 (13) 0.33264 (19) 0.0089 (4)
H5A 0.5242 0.7146 0.2860 0.011*
C6 0.1441 (2) 0.62218 (13) 0.5369 (2) 0.0127 (4)
H6A 0.1190 0.5851 0.4614 0.015*
C7 −0.0851 (2) 0.61693 (15) 0.5540 (3) 0.0222 (5)
H7A −0.0954 0.5838 0.4709 0.033*
H7B −0.1451 0.6665 0.5390 0.033*
H7C −0.1045 0.5793 0.6235 0.033*
C8 0.0852 (2) 0.70808 (15) 0.7160 (2) 0.0185 (5)
H8A 0.1524 0.7493 0.7047 0.028*
H8B 0.1179 0.6734 0.7968 0.028*
H8C 0.0074 0.7401 0.7241 0.028*
C9 0.2418 (2) 1.14619 (14) 0.3491 (3) 0.0210 (5)
H9A 0.2665 1.1173 0.2775 0.025*
C10 0.1142 (2) 1.01507 (16) 0.3680 (3) 0.0342 (6)
H10A 0.1512 0.9948 0.2949 0.051*
H10B 0.0196 1.0210 0.3358 0.051*
H10C 0.1338 0.9730 0.4414 0.051*
C11 0.1376 (3) 1.13771 (16) 0.5363 (2) 0.0274 (6)
H11A 0.1539 1.0943 0.6080 0.041*
H11B 0.0455 1.1541 0.5146 0.041*
H11C 0.1913 1.1893 0.5657 0.041*
N1 0.43323 (16) 0.73532 (11) 0.43310 (16) 0.0090 (4)
N2 0.55335 (18) 0.86856 (12) 0.18049 (17) 0.0093 (4)
H2NA 0.596 (2) 0.9204 (15) 0.190 (2) 0.010 (6)*
H2NB 0.600 (2) 0.8292 (16) 0.160 (2) 0.019 (7)*
N3 0.05143 (17) 0.64924 (11) 0.59758 (17) 0.0140 (4)
N4 0.17122 (19) 1.10045 (12) 0.41599 (19) 0.0212 (4)
O1 0.26235 (14) 0.64348 (8) 0.57502 (14) 0.0120 (3)
O2 0.27851 (16) 1.22267 (10) 0.37064 (17) 0.0267 (4)
Cl1 0.60647 (5) 0.54783 (3) 0.42042 (5) 0.00949 (12)
Cl2 0.26678 (5) 0.56642 (3) 0.27259 (5) 0.01240 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.00809 (14) 0.00705 (14) 0.00920 (14) −0.00007 (11) 0.00421 (10) −0.00004 (10)
C1 0.0088 (10) 0.0124 (11) 0.0097 (10) 0.0003 (9) 0.0028 (8) −0.0004 (8)
C2 0.0141 (11) 0.0122 (11) 0.0117 (10) 0.0013 (9) 0.0038 (9) −0.0035 (9)
C3 0.0148 (11) 0.0082 (10) 0.0124 (10) −0.0016 (9) 0.0021 (9) 0.0005 (8)
C4 0.0061 (10) 0.0118 (10) 0.0076 (9) −0.0013 (8) 0.0008 (8) 0.0007 (8)
C5 0.0065 (10) 0.0109 (10) 0.0091 (9) 0.0014 (8) 0.0015 (8) −0.0007 (8)
C6 0.0148 (11) 0.0097 (10) 0.0144 (10) −0.0005 (9) 0.0052 (9) 0.0022 (9)
C7 0.0140 (12) 0.0201 (12) 0.0347 (13) −0.0027 (10) 0.0104 (10) −0.0025 (11)
C8 0.0163 (12) 0.0195 (12) 0.0228 (12) 0.0017 (10) 0.0110 (10) −0.0030 (10)
C9 0.0066 (10) 0.0182 (13) 0.0414 (14) −0.0015 (10) 0.0121 (10) −0.0117 (11)
C10 0.0259 (14) 0.0224 (14) 0.0514 (17) −0.0045 (11) 0.0036 (13) −0.0057 (13)
C11 0.0332 (14) 0.0287 (14) 0.0242 (13) 0.0007 (12) 0.0145 (11) 0.0035 (11)
N1 0.0074 (8) 0.0099 (8) 0.0090 (8) 0.0008 (7) 0.0008 (7) 0.0002 (7)
N2 0.0117 (9) 0.0057 (9) 0.0118 (9) 0.0007 (8) 0.0055 (7) −0.0001 (7)
N3 0.0098 (9) 0.0136 (9) 0.0208 (10) −0.0002 (8) 0.0079 (8) −0.0010 (8)
N4 0.0225 (11) 0.0159 (10) 0.0262 (10) 0.0018 (9) 0.0075 (9) 0.0009 (8)
O1 0.0110 (7) 0.0116 (7) 0.0148 (7) −0.0002 (6) 0.0059 (6) 0.0004 (6)
O2 0.0270 (10) 0.0195 (9) 0.0385 (10) −0.0038 (8) 0.0174 (8) 0.0034 (8)
Cl1 0.0099 (2) 0.0079 (2) 0.0125 (2) −0.0002 (2) 0.00632 (19) 0.00006 (19)
Cl2 0.0128 (3) 0.0128 (3) 0.0116 (2) −0.0007 (2) 0.0029 (2) −0.0008 (2)

Geometric parameters (Å, º)

Ni—O1 2.0607 (13) C7—H7B 0.9600
Ni—N1 2.0860 (16) C7—H7C 0.9600
Ni—N2i 2.1593 (17) C8—N3 1.462 (3)
Ni—Cl1 2.4124 (5) C8—H8A 0.9600
Ni—Cl2 2.4139 (5) C8—H8B 0.9600
Ni—Cl1ii 2.4833 (5) C8—H8C 0.9600
C1—N1 1.343 (2) C9—O2 1.216 (2)
C1—C2 1.380 (3) C9—N4 1.305 (3)
C1—H1A 0.9300 C9—H9A 0.9300
C2—C3 1.380 (3) C10—N4 1.449 (3)
C2—H2A 0.9300 C10—H10A 0.9600
C3—C4 1.388 (3) C10—H10B 0.9600
C3—H3A 0.9300 C10—H10C 0.9600
C4—C5 1.388 (3) C11—N4 1.454 (3)
C4—N2 1.417 (2) C11—H11A 0.9600
C5—N1 1.343 (2) C11—H11B 0.9600
C5—H5A 0.9300 C11—H11C 0.9600
C6—O1 1.236 (2) N2—Niiii 2.1593 (17)
C6—N3 1.322 (3) N2—H2NA 0.89 (2)
C6—H6A 0.9300 N2—H2NB 0.82 (2)
C7—N3 1.462 (3) Cl1—Niii 2.4833 (5)
C7—H7A 0.9600
O1—Ni—N1 88.14 (6) N3—C8—H8A 109.5
O1—Ni—N2i 88.87 (6) N3—C8—H8B 109.5
N1—Ni—N2i 88.32 (7) H8A—C8—H8B 109.5
O1—Ni—Cl1 171.70 (4) N3—C8—H8C 109.5
N1—Ni—Cl1 96.57 (5) H8A—C8—H8C 109.5
N2i—Ni—Cl1 84.46 (5) H8B—C8—H8C 109.5
O1—Ni—Cl2 93.85 (4) O2—C9—N4 126.7 (2)
N1—Ni—Cl2 93.17 (5) O2—C9—H9A 116.7
N2i—Ni—Cl2 176.93 (5) N4—C9—H9A 116.7
Cl1—Ni—Cl2 92.710 (18) N4—C10—H10A 109.5
O1—Ni—Cl1ii 88.36 (4) N4—C10—H10B 109.5
N1—Ni—Cl1ii 174.19 (4) H10A—C10—H10B 109.5
N2i—Ni—Cl1ii 86.97 (5) N4—C10—H10C 109.5
Cl1—Ni—Cl1ii 86.372 (17) H10A—C10—H10C 109.5
Cl2—Ni—Cl1ii 91.690 (18) H10B—C10—H10C 109.5
N1—C1—C2 122.69 (18) N4—C11—H11A 109.5
N1—C1—H1A 118.7 N4—C11—H11B 109.5
C2—C1—H1A 118.7 H11A—C11—H11B 109.5
C1—C2—C3 119.24 (19) N4—C11—H11C 109.5
C1—C2—H2A 120.4 H11A—C11—H11C 109.5
C3—C2—H2A 120.4 H11B—C11—H11C 109.5
C2—C3—C4 118.92 (19) C5—N1—C1 117.80 (17)
C2—C3—H3A 120.5 C5—N1—Ni 123.02 (13)
C4—C3—H3A 120.5 C1—N1—Ni 119.17 (13)
C3—C4—C5 118.36 (18) C4—N2—Niiii 118.73 (13)
C3—C4—N2 120.29 (18) C4—N2—H2NA 112.6 (13)
C5—C4—N2 121.23 (18) Niiii—N2—H2NA 97.6 (14)
N1—C5—C4 122.94 (18) C4—N2—H2NB 112.8 (16)
N1—C5—H5A 118.5 Niiii—N2—H2NB 102.9 (16)
C4—C5—H5A 118.5 H2NA—N2—H2NB 111 (2)
O1—C6—N3 123.51 (19) C6—N3—C7 121.13 (18)
O1—C6—H6A 118.2 C6—N3—C8 120.52 (18)
N3—C6—H6A 118.2 C7—N3—C8 118.24 (17)
N3—C7—H7A 109.5 C9—N4—C10 122.0 (2)
N3—C7—H7B 109.5 C9—N4—C11 120.33 (19)
H7A—C7—H7B 109.5 C10—N4—C11 117.48 (19)
N3—C7—H7C 109.5 C6—O1—Ni 126.39 (13)
H7A—C7—H7C 109.5 Ni—Cl1—Niii 93.628 (17)
H7B—C7—H7C 109.5

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2NA···Cl2iv 0.89 (2) 2.60 (2) 3.4869 (16) 176.4 (1)
N2—H2NB···O2v 0.84 (2) 2.11 (2) 2.925 (2) 173.3 (1)

Symmetry codes: (iv) −x+1, y+1/2, −z+1/2; (v) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5609).

References

  1. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). Cryst. Growth Des. 8, 470–477.
  5. Hsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). CrystEngComm, 11, 168–176.
  6. Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. [DOI] [PubMed]
  7. Kochel, A. (2006). Acta Cryst. E62, m1740–m1742.
  8. Lah, N. & Leban, I. (2005). Acta Cryst. E61, m1708–m1710.
  9. Lah, N. & Leban, I. (2006). Acta Cryst. C62, m550–m552. [DOI] [PubMed]
  10. Qian, H.-F. & Huang, W. (2006). Acta Cryst. C62, m349–m351. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Wu, J.-Y., Feng, D.-M., He, H.-Y., Wang, Q.-X. & Zhu, L.-G. (2005). Acta Cryst. E61, m1779–m1781.
  13. Yeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595–2603.
  14. Yeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611–3618.
  15. Zhu, L.-G. & Kitagawa, S. (2002). Z. Kristallogr. New Cryst. Struct. 217, 579–580.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036215/xu5609sup1.cif

e-68-m1204-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036215/xu5609Isup2.hkl

e-68-m1204-Isup2.hkl (134.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES