Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 1;68(Pt 9):o2603. doi: 10.1107/S1600536812033569

4-(4-Fluoro­phen­yl)-3-(pyridin-4-yl)-1-(2,4,6-trichloro­phen­yl)-1H-pyrazol-5-amine

Bassam Abu Thaher a, Pierre Koch b, Dieter Schollmeyer c, Stefan Laufer b,*
PMCID: PMC3435635  PMID: 22969508

Abstract

In the title compound, C20H12Cl3FN4, the pyrazole ring forms dihedral angles of 47.51 (9), 47.37 (9) and 74.37 (9)° with the directly attached 4-fluoro­phenyl, pyridine and 2,4,6-trichloro­phenyl rings, respectively. Only one of the two amino H atoms is involved in hydrogen bonding. The crystal packing is characterized by N—H⋯N hydrogen bonds, which result in infinite chains parallel to the c axis.

Related literature  

For the inhibitory activity and preparation of the title compound, see: Abu Thaher et al. (2012a ). For related structures, see: Abu Thaher et al. (2012b ,c ,d ,e ).graphic file with name e-68-o2603-scheme1.jpg

Experimental  

Crystal data  

  • C20H12Cl3FN4

  • M r = 433.69

  • Triclinic, Inline graphic

  • a = 10.2487 (5) Å

  • b = 10.4643 (5) Å

  • c = 10.5489 (5) Å

  • α = 109.2377 (10)°

  • β = 111.4008 (10)°

  • γ = 98.0304 (11)°

  • V = 950.03 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 173 K

  • 0.33 × 0.28 × 0.07 mm

Data collection  

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.687, T max = 0.746

  • 21201 measured reflections

  • 4517 independent reflections

  • 3864 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.079

  • S = 1.03

  • 4517 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033569/bt5984sup1.cif

e-68-o2603-sup1.cif (28.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033569/bt5984Isup2.hkl

e-68-o2603-Isup2.hkl (221.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033569/bt5984Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯N22i 0.90 2.17 3.0275 (17) 157

Symmetry code: (i) Inline graphic.

Acknowledgments

BAT thanks the Alexander von Humboldt-Foundation for funding.

supplementary crystallographic information

Comment

The regioisomeric switch from 3-(4-fluorophenyl)-4-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine to 4-(4-fluorophenyl)-3-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine changes the inhibitory profile from p38α MAP kinase to kinases relevant in cancer (Abu Thaher et al. 2012a). Recently, we reported similar crystal structures (Abu Thaher et al. 2012b,c,d,e). In the crystal structure of the title compound (Fig. 1), the pyrazole ring forms dihedral angels of 47.51 (9)°, 47.37 (9)°, 74.37 (9)° with the 4-fluorophenyl, pyridine and 2,4,6-trichlorophenyl rings, respectively. The 4-fluorophenyl ring encloses dihedral angels of 64.25 (8)° and 66.11 (8)° toward the pyridine and 2,4,6-trichlorophenyl rings, respectively. The pyridine ring is orientated at a dihedral angle of 78.99 (8)° toward the 2,4,6-trichlorophenyl ring. The crystal packing shows that the amino function acts as a hydrogen bond donor of an intermolecular hydrogen bond to the nitrogen atom (N22) of the pyridine ring. The length of the hydrogen bond is 2.17 Å (Table 1) and forms an infinite chain parallel to the c-axis.

Experimental

LDA (20 mmol) was added to dry THF (30 ml) in a three neck flask and cooled to 195 K. 4-Fluorophenylacetonitrile (14 mmol) in THF (10 ml) was added dropwise and the reaction was left stirring for 45 min. N-(2,4,6-trichlorophenyl)pyridine-4-carbohydrazonoyl chloride (5 mmol) was added slowly portionwise to the reaction. After about 1.0 h, the reaction was finished and left stirring to reach room temperature. Water (50 ml) was added to the reaction mixture and extracted with ethyl acetate (2x 50 mL). The organic layer was dried over Na2SO4. The organic layer was concentrated to about 5 ml and left overnight. The title compound was precipitated as a pale brown solid, filtered out, washed with petroleum ether. Yield 35%. The crystals for structure determination were obtained from recrystallization of the product from hot ethyl acetate.

Refinement

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). Hydrogen atoms attached to nitrogen were located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.

Crystal data

C20H12Cl3FN4 Z = 2
Mr = 433.69 F(000) = 440
Triclinic, P1 Dx = 1.516 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.2487 (5) Å Cell parameters from 7293 reflections
b = 10.4643 (5) Å θ = 2.2–27.7°
c = 10.5489 (5) Å µ = 0.51 mm1
α = 109.2377 (10)° T = 173 K
β = 111.4008 (10)° Plate, colourless
γ = 98.0304 (11)° 0.33 × 0.28 × 0.07 mm
V = 950.03 (8) Å3

Data collection

Bruker SMART APEXII diffractometer 4517 independent reflections
Radiation source: sealed Tube 3864 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
CCD scan θmax = 27.8°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −13→13
Tmin = 0.687, Tmax = 0.746 k = −13→13
21201 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.4497P] where P = (Fo2 + 2Fc2)/3
4517 reflections (Δ/σ)max = 0.001
253 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.11579 (4) 0.81835 (4) 0.49931 (4) 0.03113 (10)
Cl2 0.55419 (4) 0.70476 (4) 0.42446 (4) 0.03333 (10)
Cl3 0.97212 (5) 1.14538 (4) 0.90748 (5) 0.04454 (13)
F1 0.50004 (11) −0.13075 (9) −0.22515 (12) 0.0397 (2)
N1 0.79475 (14) 0.65783 (12) 0.33280 (12) 0.0233 (3)
N2 0.78815 (13) 0.68969 (12) 0.21373 (12) 0.0218 (2)
C3 0.75032 (15) 0.56326 (14) 0.10311 (14) 0.0195 (3)
C4 0.73201 (16) 0.44990 (14) 0.14668 (15) 0.0210 (3)
C5 0.76173 (16) 0.51568 (14) 0.29651 (15) 0.0225 (3)
N6 0.76393 (17) 0.46090 (14) 0.39766 (14) 0.0333 (3)
H6A 0.7576 0.5126 0.4816 0.050*
H6B 0.7212 0.3720 0.3571 0.050*
C7 0.83795 (16) 0.77123 (14) 0.47287 (14) 0.0212 (3)
C8 0.98371 (16) 0.85674 (15) 0.55896 (15) 0.0220 (3)
C9 1.02636 (16) 0.97336 (15) 0.69174 (15) 0.0241 (3)
H9 1.1252 1.0322 0.7475 0.029*
C10 0.92128 (17) 1.00187 (15) 0.74088 (16) 0.0260 (3)
C11 0.77596 (17) 0.92009 (15) 0.66037 (16) 0.0258 (3)
H11 0.7054 0.9417 0.6960 0.031*
C12 0.73591 (16) 0.80573 (15) 0.52632 (15) 0.0228 (3)
C13 0.67511 (15) 0.29689 (14) 0.05054 (15) 0.0203 (3)
C14 0.73867 (17) 0.19851 (16) 0.09215 (16) 0.0261 (3)
H14 0.8231 0.2304 0.1848 0.031*
C15 0.67967 (18) 0.05394 (16) −0.00078 (18) 0.0293 (3)
H15 0.7226 −0.0129 0.0279 0.035*
C16 0.55864 (17) 0.01080 (15) −0.13404 (17) 0.0274 (3)
C17 0.49321 (17) 0.10325 (16) −0.18119 (16) 0.0272 (3)
H17 0.4102 0.0701 −0.2752 0.033*
C18 0.55209 (16) 0.24677 (15) −0.08716 (16) 0.0235 (3)
H18 0.5077 0.3123 −0.1172 0.028*
C19 0.74226 (15) 0.55640 (14) −0.04193 (14) 0.0192 (3)
C20 0.67214 (16) 0.63729 (15) −0.10978 (15) 0.0224 (3)
H20 0.6215 0.6939 −0.0672 0.027*
C21 0.67723 (17) 0.63399 (16) −0.24026 (16) 0.0264 (3)
H21 0.6265 0.6878 −0.2865 0.032*
N22 0.74904 (15) 0.55985 (14) −0.30536 (14) 0.0290 (3)
C23 0.81503 (18) 0.48164 (17) −0.23960 (17) 0.0292 (3)
H23 0.8670 0.4280 −0.2832 0.035*
C24 0.81216 (16) 0.47424 (15) −0.11190 (16) 0.0242 (3)
H24 0.8574 0.4138 −0.0725 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.03306 (19) 0.0364 (2) 0.02770 (18) 0.01592 (16) 0.01643 (15) 0.01189 (16)
Cl2 0.02807 (19) 0.0373 (2) 0.02116 (17) −0.00504 (15) 0.00680 (14) 0.00688 (15)
Cl3 0.0481 (2) 0.0315 (2) 0.0318 (2) −0.00855 (18) 0.02382 (19) −0.01149 (17)
F1 0.0488 (6) 0.0173 (4) 0.0460 (6) 0.0034 (4) 0.0257 (5) 0.0021 (4)
N1 0.0368 (7) 0.0182 (6) 0.0127 (5) 0.0038 (5) 0.0108 (5) 0.0058 (4)
N2 0.0309 (6) 0.0211 (6) 0.0135 (5) 0.0046 (5) 0.0100 (5) 0.0083 (4)
C3 0.0231 (6) 0.0203 (6) 0.0141 (6) 0.0052 (5) 0.0082 (5) 0.0063 (5)
C4 0.0282 (7) 0.0196 (6) 0.0153 (6) 0.0060 (5) 0.0100 (5) 0.0073 (5)
C5 0.0320 (7) 0.0190 (6) 0.0163 (6) 0.0062 (6) 0.0109 (6) 0.0075 (5)
N6 0.0631 (9) 0.0211 (6) 0.0191 (6) 0.0100 (6) 0.0213 (6) 0.0094 (5)
C7 0.0319 (7) 0.0170 (6) 0.0127 (6) 0.0046 (5) 0.0088 (5) 0.0061 (5)
C8 0.0280 (7) 0.0227 (7) 0.0180 (6) 0.0088 (6) 0.0109 (5) 0.0103 (5)
C9 0.0259 (7) 0.0221 (7) 0.0189 (6) 0.0022 (6) 0.0077 (6) 0.0066 (5)
C10 0.0341 (8) 0.0197 (7) 0.0177 (6) 0.0015 (6) 0.0122 (6) 0.0020 (5)
C11 0.0313 (8) 0.0238 (7) 0.0222 (7) 0.0034 (6) 0.0158 (6) 0.0066 (6)
C12 0.0257 (7) 0.0219 (7) 0.0166 (6) 0.0000 (5) 0.0076 (5) 0.0078 (5)
C13 0.0280 (7) 0.0187 (6) 0.0176 (6) 0.0059 (5) 0.0139 (5) 0.0072 (5)
C14 0.0336 (8) 0.0258 (7) 0.0214 (7) 0.0107 (6) 0.0127 (6) 0.0111 (6)
C15 0.0410 (9) 0.0241 (7) 0.0341 (8) 0.0150 (7) 0.0227 (7) 0.0159 (6)
C16 0.0365 (8) 0.0164 (6) 0.0309 (8) 0.0038 (6) 0.0228 (7) 0.0045 (6)
C17 0.0292 (7) 0.0242 (7) 0.0224 (7) 0.0029 (6) 0.0113 (6) 0.0047 (6)
C18 0.0281 (7) 0.0208 (7) 0.0223 (7) 0.0073 (6) 0.0121 (6) 0.0088 (5)
C19 0.0217 (6) 0.0185 (6) 0.0135 (6) 0.0004 (5) 0.0071 (5) 0.0050 (5)
C20 0.0290 (7) 0.0210 (7) 0.0189 (6) 0.0070 (6) 0.0128 (6) 0.0079 (5)
C21 0.0360 (8) 0.0259 (7) 0.0194 (7) 0.0083 (6) 0.0128 (6) 0.0116 (6)
N22 0.0401 (7) 0.0291 (7) 0.0199 (6) 0.0067 (6) 0.0169 (5) 0.0098 (5)
C23 0.0367 (8) 0.0301 (8) 0.0247 (7) 0.0111 (6) 0.0194 (6) 0.0086 (6)
C24 0.0285 (7) 0.0251 (7) 0.0210 (7) 0.0091 (6) 0.0119 (6) 0.0102 (6)

Geometric parameters (Å, º)

Cl1—C8 1.7310 (15) C11—H11 0.9500
Cl2—C12 1.7266 (15) C13—C18 1.3969 (19)
Cl3—C10 1.7289 (14) C13—C14 1.398 (2)
F1—C16 1.3677 (16) C14—C15 1.396 (2)
N1—C5 1.3649 (18) C14—H14 0.9500
N1—N2 1.3833 (16) C15—C16 1.368 (2)
N1—C7 1.4170 (16) C15—H15 0.9500
N2—C3 1.3310 (17) C16—C17 1.374 (2)
C3—C4 1.4190 (19) C17—C18 1.390 (2)
C3—C19 1.4788 (18) C17—H17 0.9500
C4—C5 1.3921 (18) C18—H18 0.9500
C4—C13 1.4730 (18) C19—C24 1.3918 (19)
C5—N6 1.3627 (18) C19—C20 1.3925 (19)
N6—H6A 0.9044 C20—C21 1.3857 (19)
N6—H6B 0.8528 C20—H20 0.9500
C7—C12 1.394 (2) C21—N22 1.339 (2)
C7—C8 1.399 (2) C21—H21 0.9500
C8—C9 1.3856 (19) N22—C23 1.340 (2)
C9—C10 1.383 (2) C23—C24 1.385 (2)
C9—H9 0.9500 C23—H23 0.9500
C10—C11 1.383 (2) C24—H24 0.9500
C11—C12 1.3872 (19)
C5—N1—N2 112.70 (11) C18—C13—C14 118.19 (13)
C5—N1—C7 128.89 (12) C18—C13—C4 119.28 (12)
N2—N1—C7 118.37 (11) C14—C13—C4 122.54 (13)
C3—N2—N1 103.52 (11) C15—C14—C13 120.83 (14)
N2—C3—C4 112.95 (12) C15—C14—H14 119.6
N2—C3—C19 118.76 (12) C13—C14—H14 119.6
C4—C3—C19 128.15 (12) C16—C15—C14 118.46 (14)
C5—C4—C3 104.41 (12) C16—C15—H15 120.8
C5—C4—C13 127.41 (13) C14—C15—H15 120.8
C3—C4—C13 127.71 (12) F1—C16—C15 118.68 (14)
N6—C5—N1 122.51 (12) F1—C16—C17 118.28 (14)
N6—C5—C4 131.05 (13) C15—C16—C17 123.04 (13)
N1—C5—C4 106.42 (12) C16—C17—C18 117.99 (14)
C5—N6—H6A 120.3 C16—C17—H17 121.0
C5—N6—H6B 113.1 C18—C17—H17 121.0
H6A—N6—H6B 117.0 C17—C18—C13 121.49 (13)
C12—C7—C8 117.70 (12) C17—C18—H18 119.3
C12—C7—N1 121.29 (13) C13—C18—H18 119.3
C8—C7—N1 120.93 (13) C24—C19—C20 117.29 (12)
C9—C8—C7 121.78 (13) C24—C19—C3 120.87 (12)
C9—C8—Cl1 118.35 (11) C20—C19—C3 121.74 (12)
C7—C8—Cl1 119.86 (10) C21—C20—C19 119.06 (13)
C10—C9—C8 118.23 (13) C21—C20—H20 120.5
C10—C9—H9 120.9 C19—C20—H20 120.5
C8—C9—H9 120.9 N22—C21—C20 124.20 (14)
C9—C10—C11 122.19 (13) N22—C21—H21 117.9
C9—C10—Cl3 119.16 (11) C20—C21—H21 117.9
C11—C10—Cl3 118.65 (12) C21—N22—C23 116.10 (13)
C10—C11—C12 118.28 (14) N22—C23—C24 124.00 (14)
C10—C11—H11 120.9 N22—C23—H23 118.0
C12—C11—H11 120.9 C24—C23—H23 118.0
C11—C12—C7 121.79 (13) C23—C24—C19 119.25 (14)
C11—C12—Cl2 118.38 (12) C23—C24—H24 120.4
C7—C12—Cl2 119.83 (11) C19—C24—H24 120.4
C5—N1—N2—C3 −0.07 (16) C10—C11—C12—Cl2 −179.22 (12)
C7—N1—N2—C3 177.83 (12) C8—C7—C12—C11 −0.3 (2)
N1—N2—C3—C4 0.03 (16) N1—C7—C12—C11 −177.31 (13)
N1—N2—C3—C19 −175.96 (12) C8—C7—C12—Cl2 179.62 (11)
N2—C3—C4—C5 0.02 (17) N1—C7—C12—Cl2 2.64 (19)
C19—C3—C4—C5 175.55 (13) C5—C4—C13—C18 127.95 (16)
N2—C3—C4—C13 172.59 (13) C3—C4—C13—C18 −43.0 (2)
C19—C3—C4—C13 −11.9 (2) C5—C4—C13—C14 −51.4 (2)
N2—N1—C5—N6 178.89 (14) C3—C4—C13—C14 137.65 (16)
C7—N1—C5—N6 1.3 (2) C18—C13—C14—C15 −0.7 (2)
N2—N1—C5—C4 0.09 (17) C4—C13—C14—C15 178.67 (14)
C7—N1—C5—C4 −177.54 (14) C13—C14—C15—C16 0.4 (2)
C3—C4—C5—N6 −178.73 (16) C14—C15—C16—F1 −179.70 (13)
C13—C4—C5—N6 8.7 (3) C14—C15—C16—C17 0.6 (2)
C3—C4—C5—N1 −0.07 (16) F1—C16—C17—C18 179.13 (13)
C13—C4—C5—N1 −172.66 (14) C15—C16—C17—C18 −1.1 (2)
C5—N1—C7—C12 −77.8 (2) C16—C17—C18—C13 0.8 (2)
N2—N1—C7—C12 104.65 (16) C14—C13—C18—C17 0.1 (2)
C5—N1—C7—C8 105.30 (18) C4—C13—C18—C17 −179.29 (13)
N2—N1—C7—C8 −72.23 (18) N2—C3—C19—C24 130.10 (15)
C12—C7—C8—C9 −1.0 (2) C4—C3—C19—C24 −45.2 (2)
N1—C7—C8—C9 175.96 (13) N2—C3—C19—C20 −46.22 (19)
C12—C7—C8—Cl1 179.43 (11) C4—C3—C19—C20 138.48 (15)
N1—C7—C8—Cl1 −3.59 (18) C24—C19—C20—C21 −1.0 (2)
C7—C8—C9—C10 1.9 (2) C3—C19—C20—C21 175.42 (13)
Cl1—C8—C9—C10 −178.53 (11) C19—C20—C21—N22 −1.7 (2)
C8—C9—C10—C11 −1.5 (2) C20—C21—N22—C23 2.2 (2)
C8—C9—C10—Cl3 179.15 (11) C21—N22—C23—C24 0.1 (2)
C9—C10—C11—C12 0.2 (2) N22—C23—C24—C19 −2.7 (2)
Cl3—C10—C11—C12 179.56 (11) C20—C19—C24—C23 3.1 (2)
C10—C11—C12—C7 0.7 (2) C3—C19—C24—C23 −173.41 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N6—H6A···N22i 0.90 2.17 3.0275 (17) 157

Symmetry code: (i) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5984).

References

  1. Abu Thaher, B., Arnsmann, M., Totzke, F., Ehlert, J. E., Kubbutat, M. H. G., Schächtele, C., Zimmermann, M. O., Koch, P., Boeckler, F. M. & Laufer, S. A. (2012a). J. Med. Chem. 55, 961–965. [DOI] [PubMed]
  2. Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012b). Acta Cryst. E68, o632. [DOI] [PMC free article] [PubMed]
  3. Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012c). Acta Cryst. E68, o633. [DOI] [PMC free article] [PubMed]
  4. Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012d). Acta Cryst. E68, o917–o918. [DOI] [PMC free article] [PubMed]
  5. Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012e). Acta Cryst. E68, o935. [DOI] [PMC free article] [PubMed]
  6. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  7. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033569/bt5984sup1.cif

e-68-o2603-sup1.cif (28.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033569/bt5984Isup2.hkl

e-68-o2603-Isup2.hkl (221.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033569/bt5984Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES