Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 1;68(Pt 9):o2605. doi: 10.1107/S1600536812033697

2-Methyl­sulfan­yl-1H-perimidin-3-ium iodide

Mohammad Hassan Ghorbani a,*
PMCID: PMC3435637  PMID: 22969510

Abstract

In the structure of the title salt C12H11N2S+·I, the methyl­sulfanyl group of the cation is nearly coplanar with the perimidine rings, as indicated by the C—S—C—N torsion angles of 2.9 (5) and −177.2 (3)°, respectively. The (S)C—N bond lengths in the heterocyclic ring are approximately equal [1.325 (5) and 1.326 (6) Å] suggesting a degree of delocalization. In the crystal, cations and anions are linked via two discrete N—H⋯I hydrogen bonds, forming chains along the b axis.

Related literature  

For synthetic details and applications, see: Liu & Chen (1984); Herbert et al. (1987). For the NMR spectra, see Woodgate et al. (1988). For related structures, see: Molčanov et al. (2012); Wang (2012); Tiritiris & Kantlehner (2012).graphic file with name e-68-o2605-scheme1.jpg

Experimental  

Crystal data  

  • C12H11N2S+·I

  • M r = 342.19

  • Monoclinic, Inline graphic

  • a = 7.0107 (14) Å

  • b = 8.8968 (18) Å

  • c = 19.520 (4) Å

  • β = 95.90 (3)°

  • V = 1211.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.79 mm−1

  • T = 298 K

  • 0.20 × 0.17 × 0.10 mm

Data collection  

  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical (X-RED32; Stoe & Cie, 2005) T min = 0.605, T max = 0.768

  • 8695 measured reflections

  • 3266 independent reflections

  • 2151 reflections with I > 2σ(I)

  • R int = 0.053

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.094

  • S = 1.11

  • 3266 reflections

  • 152 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033697/sj5260sup1.cif

e-68-o2605-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033697/sj5260Isup2.hkl

e-68-o2605-Isup2.hkl (160.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033697/sj5260Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯I1i 0.81 (2) 2.72 (3) 3.500 (4) 161 (5)
N1—H1⋯I1 0.85 (6) 2.98 (6) 3.813 (4) 169 (5)

Symmetry code: (i) Inline graphic.

Acknowledgments

The author thanks the Islamic Azad University-Falavarjan Branch for financial support. He also wishes to thank Professor Mehdi Bakavoli, Ferdowsi University of Mashhad, and Dr Behrouz Notash, Shahid Beheshti University, for their helpful assistance.

supplementary crystallographic information

Comment

The title compound is used in the synthesis of some potentially active antitumor agents (Herbert et al., 1987) and heterocyclic compounds (Liu & Chen, 1984). So far, the structure of this compound and its neutral form has been studied using 13C and 1H NMR spectroscopy (Woodgate et al., 1988). Herein, the crystal structure of this salt is investigated using X-ray crystallography.

In the structure of the 2-methylsulfanylperimidinium cation, the methylsulfanyl group is nearly coplanar with perimidine rings [the torsion angles N1—C2—S—C1 and N2—C2—S—C1 are 2.9 (5)° and -177.2 (3)°, respectively]. Because of conjugation between the lone pair electrons of the S atom and the amidinum moiety (HN—C=NH+) in the cation, the C2—S bond length [1.730 (5) Å] is shorter than C1—S [1.789 (5) Å]. Also, like other amidinium cations (Molčanov et al., 2012; Wang, 2012; Tiritiris & Kantlehner, 2012), the C—N bond lengths in the cation are approximately equal [the bond lengths of C2—N1 and C2—N2 are 1.325 (5) Å and 1.325 (6) Å, respectively].

In the crystal lattice, the cations and anions are linked together via two different N—H···I hydrogen bonds, in which every iodide anion act as a bridge between two 2-methylsulfanylperimidinium cations.

Experimental

The title salt was prepared by a literature method (Liu & Chen, 1984; Herbert et al., 1987). Suitable single crystals for X-ray analysis were obtained from ethanol solution at room temperature.

Refinement

All hydrogen atoms bound to carbon were positioned geometrically with C—H distances = 0.93–0.96 Å and included in a riding model approximation with Uiso(H) = 1.2 or 1.5Ueq(C). The N–H hydrogen atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

Preparation of the title compound from the reaction of perimidine-2-thione with methyl iodide under reflux conditions.

Fig. 2.

Fig. 2.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 3.

Fig. 3.

Chains of molecules along the b axis.

Crystal data

C12H11N2S+·I F(000) = 664
Mr = 342.19 Dx = 1.877 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3266 reflections
a = 7.0107 (14) Å θ = 2.1–29.2°
b = 8.8968 (18) Å µ = 2.79 mm1
c = 19.520 (4) Å T = 298 K
β = 95.90 (3)° Plate, green
V = 1211.1 (4) Å3 0.20 × 0.17 × 0.10 mm
Z = 4

Data collection

Stoe IPDS 2T diffractometer 3266 independent reflections
Radiation source: fine-focus sealed tube 2151 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.053
Detector resolution: 0.15 pixels mm-1 θmax = 29.2°, θmin = 2.1°
rotation method scans h = −9→9
Absorption correction: numerical (X-RED32; Stoe & Cie, 2005) k = −12→10
Tmin = 0.605, Tmax = 0.768 l = −26→23
8695 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.0203P] where P = (Fo2 + 2Fc2)/3
3266 reflections (Δ/σ)max = 0.001
152 parameters Δρmax = 0.98 e Å3
1 restraint Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.23717 (5) 0.01191 (3) 0.335840 (18) 0.04724 (12)
S1 0.3337 (2) 0.57350 (14) 0.29413 (7) 0.0475 (3)
N1 0.2710 (5) 0.4113 (4) 0.4069 (2) 0.0308 (8)
N2 0.3149 (6) 0.6660 (4) 0.4194 (2) 0.0341 (9)
C1 0.2992 (8) 0.3909 (6) 0.2564 (3) 0.0481 (13)
H1A 0.3861 0.3211 0.2806 0.072*
H1B 0.3232 0.3950 0.2089 0.072*
H1C 0.1696 0.3588 0.2595 0.072*
C2 0.3031 (6) 0.5445 (5) 0.3799 (2) 0.0304 (9)
C3 0.2384 (6) 0.3919 (5) 0.4769 (2) 0.0295 (9)
C4 0.1976 (7) 0.2561 (5) 0.5032 (3) 0.0376 (11)
H4 0.1910 0.1707 0.4756 0.045*
C5 0.1651 (7) 0.2459 (6) 0.5733 (3) 0.0432 (12)
H5 0.1363 0.1531 0.5916 0.052*
C6 0.1753 (7) 0.3702 (6) 0.6146 (3) 0.0414 (12)
H6 0.1535 0.3607 0.6606 0.050*
C7 0.2184 (6) 0.5129 (5) 0.5885 (2) 0.0344 (9)
C8 0.2492 (5) 0.5236 (5) 0.5181 (2) 0.0295 (8)
C9 0.2892 (6) 0.6642 (5) 0.4898 (2) 0.0299 (9)
C10 0.3011 (7) 0.7923 (5) 0.5285 (3) 0.0406 (11)
H10 0.3295 0.8844 0.5095 0.049*
C11 0.2689 (7) 0.7801 (6) 0.5986 (3) 0.0451 (13)
H11 0.2756 0.8664 0.6257 0.054*
C12 0.2284 (7) 0.6463 (6) 0.6281 (3) 0.0434 (12)
H12 0.2074 0.6427 0.6744 0.052*
H1 0.274 (8) 0.328 (7) 0.387 (3) 0.052*
H2 0.327 (8) 0.746 (4) 0.401 (3) 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0704 (2) 0.02971 (16) 0.04296 (19) −0.00194 (17) 0.01260 (14) 0.00215 (16)
S1 0.0825 (10) 0.0347 (6) 0.0260 (6) −0.0092 (6) 0.0095 (6) 0.0024 (5)
N1 0.036 (2) 0.0292 (18) 0.029 (2) −0.0009 (15) 0.0099 (16) −0.0010 (16)
N2 0.046 (2) 0.0261 (18) 0.031 (2) −0.0010 (16) 0.0056 (18) 0.0030 (15)
C1 0.074 (4) 0.037 (3) 0.034 (3) −0.008 (2) 0.011 (3) −0.008 (2)
C2 0.031 (2) 0.032 (2) 0.028 (2) 0.0019 (17) 0.0010 (18) 0.0031 (17)
C3 0.025 (2) 0.035 (2) 0.030 (2) 0.0053 (17) 0.0057 (18) 0.0056 (18)
C4 0.038 (3) 0.036 (2) 0.039 (3) 0.000 (2) 0.007 (2) 0.004 (2)
C5 0.047 (3) 0.044 (3) 0.040 (3) −0.001 (2) 0.011 (2) 0.011 (2)
C6 0.038 (3) 0.056 (3) 0.030 (3) 0.005 (2) 0.006 (2) 0.009 (2)
C7 0.0287 (19) 0.047 (3) 0.027 (2) 0.006 (2) 0.0014 (16) 0.002 (2)
C8 0.0248 (18) 0.034 (2) 0.029 (2) 0.0038 (17) 0.0010 (16) −0.0004 (19)
C9 0.027 (2) 0.033 (2) 0.029 (2) 0.0021 (17) 0.0024 (18) −0.0025 (18)
C10 0.047 (3) 0.033 (2) 0.040 (3) 0.003 (2) 0.003 (2) −0.005 (2)
C11 0.046 (3) 0.048 (3) 0.040 (3) 0.003 (2) −0.002 (2) −0.019 (2)
C12 0.041 (3) 0.062 (3) 0.026 (3) 0.004 (2) 0.001 (2) −0.007 (2)

Geometric parameters (Å, º)

S1—C2 1.730 (5) C4—H4 0.9300
S1—C1 1.789 (5) C5—C6 1.366 (7)
N1—C2 1.325 (5) C5—H5 0.9300
N1—C3 1.418 (6) C6—C7 1.413 (7)
N1—H1 0.85 (6) C6—H6 0.9300
N2—C2 1.325 (6) C7—C12 1.415 (7)
N2—C9 1.404 (6) C7—C8 1.415 (6)
N2—H2 0.811 (19) C8—C9 1.408 (6)
C1—H1A 0.9600 C9—C10 1.366 (6)
C1—H1B 0.9600 C10—C11 1.414 (7)
C1—H1C 0.9600 C10—H10 0.9300
C3—C4 1.356 (6) C11—C12 1.365 (8)
C3—C8 1.419 (6) C11—H11 0.9300
C4—C5 1.412 (7) C12—H12 0.9300
C2—S1—C1 103.8 (2) C6—C5—H5 119.5
C2—N1—C3 122.9 (4) C4—C5—H5 119.5
C2—N1—H1 126 (4) C5—C6—C7 121.0 (4)
C3—N1—H1 111 (4) C5—C6—H6 119.5
C2—N2—C9 123.6 (4) C7—C6—H6 119.5
C2—N2—H2 118 (4) C6—C7—C12 123.8 (4)
C9—N2—H2 119 (4) C6—C7—C8 118.0 (4)
S1—C1—H1A 109.5 C12—C7—C8 118.1 (4)
S1—C1—H1B 109.5 C9—C8—C7 119.8 (4)
H1A—C1—H1B 109.5 C9—C8—C3 120.8 (4)
S1—C1—H1C 109.5 C7—C8—C3 119.4 (4)
H1A—C1—H1C 109.5 C10—C9—N2 121.7 (4)
H1B—C1—H1C 109.5 C10—C9—C8 121.8 (4)
N1—C2—N2 120.1 (4) N2—C9—C8 116.5 (4)
N1—C2—S1 124.2 (3) C9—C10—C11 117.7 (5)
N2—C2—S1 115.8 (3) C9—C10—H10 121.1
C4—C3—N1 122.4 (4) C11—C10—H10 121.1
C4—C3—C8 121.4 (4) C12—C11—C10 122.4 (5)
N1—C3—C8 116.2 (4) C12—C11—H11 118.8
C3—C4—C5 119.1 (5) C10—C11—H11 118.8
C3—C4—H4 120.4 C11—C12—C7 120.1 (5)
C5—C4—H4 120.4 C11—C12—H12 119.9
C6—C5—C4 121.0 (5) C7—C12—H12 119.9
C3—N1—C2—N2 3.3 (7) C12—C7—C8—C3 −179.5 (4)
C3—N1—C2—S1 −177.2 (3) C4—C3—C8—C9 −179.2 (4)
C9—N2—C2—N1 −2.1 (7) N1—C3—C8—C9 0.3 (6)
C9—N2—C2—S1 178.4 (3) C4—C3—C8—C7 0.6 (6)
C1—S1—C2—N1 2.9 (5) N1—C3—C8—C7 −179.9 (4)
C1—S1—C2—N2 −177.7 (4) C2—N2—C9—C10 −179.5 (4)
C2—N1—C3—C4 177.1 (4) C2—N2—C9—C8 0.0 (6)
C2—N1—C3—C8 −2.4 (6) C7—C8—C9—C10 0.5 (6)
N1—C3—C4—C5 −179.4 (4) C3—C8—C9—C10 −179.7 (4)
C8—C3—C4—C5 0.0 (7) C7—C8—C9—N2 −179.0 (4)
C3—C4—C5—C6 −0.4 (8) C3—C8—C9—N2 0.8 (6)
C4—C5—C6—C7 0.1 (8) N2—C9—C10—C11 178.6 (5)
C5—C6—C7—C12 179.1 (5) C8—C9—C10—C11 −0.9 (7)
C5—C6—C7—C8 0.5 (7) C9—C10—C11—C12 0.5 (8)
C6—C7—C8—C9 178.9 (4) C10—C11—C12—C7 0.3 (8)
C12—C7—C8—C9 0.3 (6) C6—C7—C12—C11 −179.3 (5)
C6—C7—C8—C3 −0.8 (6) C8—C7—C12—C11 −0.7 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···I1i 0.81 (2) 2.72 (3) 3.500 (4) 161 (5)
N1—H1···I1 0.85 (6) 2.98 (6) 3.813 (4) 169 (5)

Symmetry code: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5260).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  2. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  3. Herbert, J. M., Woodgate, P. D. & Denny, W. A. (1987). J. Med. Chem. 30, 2081–2086. [DOI] [PubMed]
  4. Liu, K.-C. & Chen, H.-H. (1984). J. Heterocycl. Chem. 21, 911–912.
  5. Molčanov, K., Stolić, I., Kojić-Prodić, B., Kovačević, G. & Bajić, M. (2012). Acta Cryst. E68, o1360. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Stoe & Cie (2005). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  8. Tiritiris, I. & Kantlehner, W. (2012). Acta Cryst. E68, o1812. [DOI] [PMC free article] [PubMed]
  9. Wang, Y. (2012). Acta Cryst. E68, o1619. [DOI] [PMC free article] [PubMed]
  10. Woodgate, P. D., Herbert, J. M. & Denny, W. A. (1988). Mag. Res. Chem. 26, 191–196.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033697/sj5260sup1.cif

e-68-o2605-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033697/sj5260Isup2.hkl

e-68-o2605-Isup2.hkl (160.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033697/sj5260Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES