Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 1;68(Pt 9):o2610. doi: 10.1107/S1600536812033752

Bis­(2-hy­droxy­eth­yl)ammonium 2-bromo­phenolate

Kamentheren Padayachy a, Manuel A Fernandes a, Helder M Marques a, Andreas Lemmerer a, Alvaro S de Sousa a,*
PMCID: PMC3435641  PMID: 22969514

Abstract

In the crystal structure of the 1:1 title salt, C4H12NO2 +·C6H4BrO, hydrogen-bonding inter­actions originate from the ammonium cation, which adopts a syn conformation. A gauche relationship between the C—O and C—N bonds of the 2-hy­droxy­ethyl fragments also facilitates O—H⋯O inter­actions of bis­(2-hy­droxy­eth­yl)ammonium cation chains to phenolate O atoms. The resulting double-ion chains along [100] are further linked by N—H⋯O inter­actions, forming chains parallel to [110].

Related literature  

For structures of related 2-haloethyl­ammonium salts and properties of these salts, see: Cody (1981); Cody & Strong (1980); Prout et al. (1988); Castellari & Ottani (1995); de Sousa et al. (2010a ,b ); Larsen et al. (2005); Mootz et al. (1989). For graph-set motifs, see: Bernstein et al. (1995).graphic file with name e-68-o2610-scheme1.jpg

Experimental  

Crystal data  

  • C4H12NO2 +·C6H4BrO

  • M r = 278.15

  • Monoclinic, Inline graphic

  • a = 8.0592 (1) Å

  • b = 7.6653 (1) Å

  • c = 9.7659 (2) Å

  • β = 107.250 (1)°

  • V = 576.16 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.56 mm−1

  • T = 173 K

  • 0.48 × 0.21 × 0.20 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: gaussian (XPREP; Bruker, 2005) T min = 0.280, T max = 0.537

  • 11689 measured reflections

  • 2784 independent reflections

  • 2638 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.018

  • wR(F 2) = 0.042

  • S = 1.05

  • 2784 reflections

  • 149 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983), 1290 Friedel pairs

  • Flack parameter: −0.012 (5)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033752/bh2446sup1.cif

e-68-o2610-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033752/bh2446Isup2.hkl

e-68-o2610-Isup2.hkl (133.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033752/bh2446Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.83 (2) 1.83 (2) 2.6393 (16) 165 (2)
O3—H3⋯O2i 0.84 1.87 2.7010 (18) 171
N1—H1A⋯O1ii 0.969 (18) 1.789 (19) 2.738 (2) 165.7 (16)
N1—H1B⋯O1 0.93 (2) 1.91 (2) 2.8259 (19) 169 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was funded in part by a grant through the Department of Science and Technology/National Research Foundation South Africa Research Chairs initiative to HMM.

supplementary crystallographic information

Comment

The molecular structure (Fig. 1) of the 1:1 salt of 2-bromophenol with diethanolamine (DEA) is reported. Our interest in studying DEA is aimed at developing amino alcohols as supramolecules in a crystal engineering strategy, for template self-assembly of these compounds in supramolecular structures. Directional hydrogen-bonding patterns associated with DEA have labeled this compound a potential supramolecule. It is known to aggregate into tubular columns (Mootz et al., 1989); the behaviour is emulated by C— and N—alkylated derivatives (de Sousa et al., 2010a,b). Specific O—H···O interactions of the 2-hydroxyalkyl groups contribute significantly towards tubular aggregation in alkylated derivatives of this compound. These hydrogen bonds also feature prominently in salts of DEA elucidating binding modes of thyroid hormones to transport proteins (Cody, 1981; Cody & Strong, 1980; Prout et al., 1988); the template synthesis of heterometallic wheels (Larsen et al., 2005); and in studies aimed at correlating structural and pharmacological properties of anti-inflammatory drugs (Castellari & Ottani, 1995).

O—H···O hydrogen bonds are highly influential in the molecular structure reported here for the 2-bromophenol (1:1) salt with DEA. The unitary level C(8) chain (Bernstein et al., 1995), described by O3—H3···O2 hydrogen bonds along [100], defines the backbone of the crystal structure (Fig. 2 and Table 1). In these chains syn conformations of the bis(2-hydroxyethyl) ammonium cations enjoy gauche relationships between C—O and C—N bonds, enabling further O—H···O and N—H···O hydrogen bonds of this supramolecular synthon. Hydroxyethyl O atom O2 acts as a weakly bifurcated H-donor, via H2, to phenolate O1 and Br1 atoms (Table 1). The hydrogen bonding array of the double-ion pair is completed by the N1—H1B···O1 interaction involving the ammonium N1 atom acting as a hydrogen donor, via H1B, to the phenolate oxygen atom O1. The combined O2—H2···O1 and N1—H1B···O1 interactions describe a R21(7) ring motif (Fig. 2) at the binary level (Bernstein et al., 1995). Chains of double-ion pairs along [100] are linked by N1—H1A···O1 interactions (Table 1) to form layers parallel to the ab plane (Fig. 3). Within these layers N—H···O interactions define C21(4) and C21(7) motifs along [010] (Fig. 4) when combined with interactions N1—H1B···O1 and O2—H2···O1, respectively.

Experimental

Diethanolamine (0.501 g, 4.8 mmol) was stirred in 20 ml of dimethylformamide. To this solution, sodium carbonate (0.504 g, 4.75 mmol) and 2-bromophenol (0.823 g, 4.76 mmol) was added with continuous stirring. The reaction mixture was allowed to stir for an additional 24 hours under ambient conditions. The mixture was filtered and the solvent removed under reduced pressure, to yield a clear viscous oil that crystallized upon standing.

Refinement

Hydrogen atoms were visible in the difference maps, but those bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.99 Å (CH2) or 0.95 Å (aromatic CH), as well as H3, bonded to O3, with O3—H3 bond length fixed to 0.84 Å. Isotropic displacement parameters for these H atoms were defined as Uiso(H) = 1.2Ueq(parent C atom) and Uiso(H3) = 1.5Ueq(O3). Other H atoms (H1A, H1B and H2), which are involved in hydrogen bonds, were refined freely.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Chains along [100] defined by intermolecular O—H···O hydrogen bonds. Symmetry codes: (i) x, y, z; (ii) 1+x, y, z; (iii) -1+x, y, z.

Fig. 3.

Fig. 3.

Layers parallel to (110) formed by hydrogen bonding double-ion chains along [100].

Fig. 4.

Fig. 4.

Binary C21(4) and C21(7) motifs along [010] described by N—H···O and O—H···O interactions originating at the bis(2-hydroxyethyl)ammonium cation.

Crystal data

C4H12NO2+·C6H4BrO F(000) = 284
Mr = 278.15 Dx = 1.603 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 8333 reflections
a = 8.0592 (1) Å θ = 2.2–28.2°
b = 7.6653 (1) Å µ = 3.56 mm1
c = 9.7659 (2) Å T = 173 K
β = 107.250 (1)° Needle, colourless
V = 576.16 (2) Å3 0.48 × 0.21 × 0.20 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 2784 independent reflections
Radiation source: fine-focus sealed tube 2638 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 28.0°, θmin = 2.2°
Absorption correction: gaussian (XPREP; Bruker, 2005) h = −10→10
Tmin = 0.280, Tmax = 0.537 k = −10→10
11689 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.025P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2784 reflections Δρmax = 0.17 e Å3
149 parameters Δρmin = −0.28 e Å3
1 restraint Absolute structure: Flack (1983), 1290 Friedel pairs
0 constraints Flack parameter: −0.012 (5)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4737 (2) 0.35547 (19) 0.23985 (15) 0.0163 (3)
C2 0.2924 (2) 0.3582 (2) 0.17355 (16) 0.0204 (3)
H2A 0.2208 0.4246 0.2157 0.025*
C3 0.2168 (2) 0.2669 (3) 0.04897 (18) 0.0278 (4)
H3A 0.0942 0.2709 0.0076 0.033*
C4 0.3155 (3) 0.1699 (2) −0.01670 (18) 0.0299 (4)
H4 0.2619 0.1080 −0.1028 0.036*
C5 0.4937 (3) 0.1639 (2) 0.04447 (18) 0.0263 (4)
H5 0.5637 0.0972 0.0009 0.032*
C6 0.56985 (19) 0.2557 (3) 0.16984 (15) 0.0191 (3)
O1 0.54554 (14) 0.44173 (13) 0.36173 (11) 0.0181 (2)
Br1 0.815421 (18) 0.24105 (3) 0.250455 (16) 0.02891 (5)
C7 0.7822 (2) 0.7869 (2) 0.46980 (18) 0.0222 (4)
H7A 0.8807 0.8699 0.4908 0.027*
H7B 0.7600 0.7583 0.5617 0.027*
C8 0.6234 (2) 0.8745 (2) 0.37228 (18) 0.0210 (3)
H8A 0.6257 0.9999 0.3971 0.025*
H8B 0.6266 0.8654 0.2720 0.025*
C9 0.3024 (2) 0.8634 (2) 0.26948 (17) 0.0235 (4)
H9A 0.3174 0.9897 0.2557 0.028*
H9B 0.2930 0.8035 0.1777 0.028*
C10 0.1394 (3) 0.8345 (3) 0.3100 (2) 0.0235 (4)
H10A 0.1458 0.8977 0.3998 0.028*
H10B 0.0379 0.8786 0.2334 0.028*
N1 0.4570 (2) 0.7953 (2) 0.38319 (17) 0.0168 (3)
O2 0.83024 (16) 0.63195 (16) 0.41133 (14) 0.0241 (3)
O3 0.1216 (2) 0.65362 (19) 0.3294 (2) 0.0379 (4)
H3 0.0341 0.6357 0.3575 0.057*
H1A 0.449 (2) 0.829 (2) 0.4768 (19) 0.017 (4)*
H2 0.752 (3) 0.557 (3) 0.396 (2) 0.038 (6)*
H1B 0.473 (3) 0.676 (3) 0.3791 (19) 0.012 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0227 (8) 0.0118 (7) 0.0152 (7) −0.0009 (6) 0.0069 (6) 0.0028 (5)
C2 0.0243 (9) 0.0182 (7) 0.0196 (8) 0.0012 (6) 0.0077 (6) 0.0030 (6)
C3 0.0265 (8) 0.0303 (12) 0.0213 (7) 0.0000 (8) −0.0008 (6) 0.0043 (7)
C4 0.0424 (11) 0.0284 (8) 0.0144 (8) −0.0062 (8) 0.0016 (8) −0.0026 (7)
C5 0.0398 (11) 0.0213 (8) 0.0217 (9) 0.0017 (7) 0.0150 (8) −0.0010 (7)
C6 0.0211 (6) 0.0157 (8) 0.0219 (7) −0.0016 (8) 0.0087 (5) 0.0026 (8)
O1 0.0192 (6) 0.0182 (5) 0.0170 (5) −0.0016 (4) 0.0055 (4) −0.0027 (4)
Br1 0.02163 (8) 0.02397 (8) 0.04356 (10) 0.00235 (9) 0.01340 (6) −0.00094 (11)
C7 0.0176 (8) 0.0238 (10) 0.0252 (8) −0.0027 (6) 0.0063 (6) −0.0042 (6)
C8 0.0210 (8) 0.0180 (7) 0.0267 (8) −0.0036 (6) 0.0111 (7) 0.0011 (6)
C9 0.0244 (9) 0.0243 (8) 0.0191 (8) 0.0031 (7) 0.0022 (7) 0.0042 (6)
C10 0.0195 (10) 0.0225 (9) 0.0273 (10) 0.0044 (7) 0.0050 (8) −0.0048 (8)
N1 0.0162 (7) 0.0151 (6) 0.0201 (7) −0.0009 (4) 0.0070 (5) 0.0006 (4)
O2 0.0187 (6) 0.0195 (6) 0.0356 (7) −0.0023 (5) 0.0104 (5) −0.0033 (5)
O3 0.0285 (9) 0.0231 (8) 0.0722 (12) −0.0009 (6) 0.0306 (8) −0.0068 (7)

Geometric parameters (Å, º)

C1—O1 1.3344 (18) C7—H7B 0.9900
C1—C6 1.403 (2) C8—N1 1.505 (2)
C1—C2 1.411 (2) C8—H8A 0.9900
C2—C3 1.379 (2) C8—H8B 0.9900
C2—H2A 0.9500 C9—C10 1.496 (3)
C3—C4 1.378 (3) C9—N1 1.496 (2)
C3—H3A 0.9500 C9—H9A 0.9900
C4—C5 1.383 (3) C9—H9B 0.9900
C4—H4 0.9500 C10—O3 1.412 (2)
C5—C6 1.388 (2) C10—H10A 0.9900
C5—H5 0.9500 C10—H10B 0.9900
C6—Br1 1.9041 (15) N1—H1A 0.969 (18)
C7—O2 1.4204 (19) N1—H1B 0.93 (2)
C7—C8 1.508 (2) O2—H2 0.83 (2)
C7—H7A 0.9900 O3—H3 0.8400
O1—C1—C6 123.26 (14) N1—C8—H8A 109.1
O1—C1—C2 121.22 (14) C7—C8—H8A 109.1
C6—C1—C2 115.53 (14) N1—C8—H8B 109.1
C3—C2—C1 121.58 (16) C7—C8—H8B 109.1
C3—C2—H2A 119.2 H8A—C8—H8B 107.8
C1—C2—H2A 119.2 C10—C9—N1 110.82 (14)
C4—C3—C2 121.27 (17) C10—C9—H9A 109.5
C4—C3—H3A 119.4 N1—C9—H9A 109.5
C2—C3—H3A 119.4 C10—C9—H9B 109.5
C3—C4—C5 119.06 (16) N1—C9—H9B 109.5
C3—C4—H4 120.5 H9A—C9—H9B 108.1
C5—C4—H4 120.5 O3—C10—C9 108.25 (17)
C4—C5—C6 119.67 (16) O3—C10—H10A 110.0
C4—C5—H5 120.2 C9—C10—H10A 110.0
C6—C5—H5 120.2 O3—C10—H10B 110.0
C5—C6—C1 122.89 (15) C9—C10—H10B 110.0
C5—C6—Br1 117.92 (13) H10A—C10—H10B 108.4
C1—C6—Br1 119.19 (12) C9—N1—C8 111.74 (13)
O2—C7—C8 113.57 (13) C9—N1—H1A 109.6 (10)
O2—C7—H7A 108.9 C8—N1—H1A 105.5 (10)
C8—C7—H7A 108.9 C9—N1—H1B 114.2 (12)
O2—C7—H7B 108.9 C8—N1—H1B 104.8 (14)
C8—C7—H7B 108.9 H1A—N1—H1B 110.6 (16)
H7A—C7—H7B 107.7 C7—O2—H2 111.9 (16)
N1—C8—C7 112.52 (13) C10—O3—H3 109.5
O1—C1—C2—C3 −178.80 (15) C2—C1—C6—C5 −0.6 (2)
C6—C1—C2—C3 0.6 (2) O1—C1—C6—Br1 −0.1 (2)
C1—C2—C3—C4 −0.5 (3) C2—C1—C6—Br1 −179.51 (11)
C2—C3—C4—C5 0.3 (3) O2—C7—C8—N1 82.70 (18)
C3—C4—C5—C6 −0.3 (3) N1—C9—C10—O3 −59.0 (2)
C4—C5—C6—C1 0.4 (3) C10—C9—N1—C8 −160.34 (16)
C4—C5—C6—Br1 179.38 (13) C7—C8—N1—C9 −170.68 (14)
O1—C1—C6—C5 178.81 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1 0.83 (2) 1.83 (2) 2.6393 (16) 165 (2)
O3—H3···O2i 0.84 1.87 2.7010 (18) 171
N1—H1A···O1ii 0.969 (18) 1.789 (19) 2.738 (2) 165.7 (16)
N1—H1B···O1 0.93 (2) 1.91 (2) 2.8259 (19) 169 (2)
O2—H2···Br1 0.83 (2) 2.92 (2) 3.3690 (13) 115.6 (18)

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2446).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2005). APEX2, SAINT-NT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Castellari, C. & Ottani, S. (1995). Acta Cryst. C51, 2612–2615.
  4. Cody, V. (1981). Acta Cryst. B37, 1685–1689.
  5. Cody, V. & Strong, P. D. (1980). Acta Cryst. B36, 1723–1726.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Larsen, F. K., Muryn, C. A., Overgaard, J., Timco, G. A. & Winpenny, R. E. P. (2005). Acta Cryst. E61, m1525–m1527.
  9. Mootz, D., Brodalla, D. & Wiebcke, M. (1989). Acta Cryst. C45, 754–757.
  10. Prout, K., Fail, J., Jones, R. M., Warner, R. E. & Emmett, J. C. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 265–284.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sousa, A. S. de, Hlam, Z., Fernandes, M. A. & Marques, H. M. (2010a). Acta Cryst. C66, o229–o232. [DOI] [PubMed]
  13. Sousa, A. S. de, Hlam, Z., Fernandes, M. A. & Marques, H. M. (2010b). Acta Cryst. C66, o553–o556. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033752/bh2446sup1.cif

e-68-o2610-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033752/bh2446Isup2.hkl

e-68-o2610-Isup2.hkl (133.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033752/bh2446Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES