Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 1;68(Pt 9):o2614. doi: 10.1107/S1600536812033363

1-[(Pyridin-3-yl)(pyrrolidin-1-yl)meth­yl]naphthalen-2-ol

Qin-Qin Zhou a,*
PMCID: PMC3435644  PMID: 22969517

Abstract

The title compound, C20H20N2O, was synthesized by a solvent-free one-pot three-component domino reaction of naph­tha­len-2-ol, nicotinaldehyde and pyrrolidine. The dihedral angle between the naphthalene ring system and the pyridine ring is 74.22 (6)°. The pyrrolidine ring assumes an envelope conformation with the N atom as the flap. An intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecular conformation.

Related literature  

For the synthesis and structure of a related compound, see: Wang (2012).graphic file with name e-68-o2614-scheme1.jpg

Experimental  

Crystal data  

  • C20H20N2O

  • M r = 304.38

  • Monoclinic, Inline graphic

  • a = 9.966 (2) Å

  • b = 15.587 (3) Å

  • c = 10.477 (2) Å

  • β = 91.60 (3)°

  • V = 1626.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.38 × 0.32 × 0.27 mm

Data collection  

  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.967, T max = 0.982

  • 8194 measured reflections

  • 1857 independent reflections

  • 1361 reflections with I > 2σ(I)

  • R int = 0.067

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.122

  • S = 1.02

  • 1857 reflections

  • 209 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrystalClear (Rigaku,2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033363/mw2063sup1.cif

e-68-o2614-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033363/mw2063Isup2.hkl

e-68-o2614-Isup2.hkl (91.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033363/mw2063Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.572 (3) 147

Acknowledgments

This work was supported by Southeast University

supplementary crystallographic information

Comment

The so-called Betti base derivatives, which can be synthesized by many routes (Wang, 2012), have been of great interest in coordination chemistry. Herein the crystal structure of one such compound, obtained by a solvent-free, one-pot, three-component, domino reaction of naphthalen-2-ol, nicotinaldehyde and pyrrolidine is reported.

In the title compound the bond lengths and angles are well within the expected ranges. The dihedral angle between the naphthalene ring system and the pyridine ring is 74.22 (6)°. The pyrrolidine ring adopts an envelope conformation. An intramolecular O—H···N hydrogen bond (Table 1) stabilizes the molecular conformation.

Experimental

A dry 50 mL flask was charged with nicotinaldehyde (10 mmol), naphthalen-2-ol (10 mmol) and pyrrolidine (10 mmol). The mixture was stirred at 100°C for 5 h and then ethanol (15 mL) was added. After refluxing for 30 minutes, the solution was filtered and crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation.

Refinement

All H atoms were calculated geometrically and refined using a riding model with C—H = 0.93–0.98 Å, O—H = 0.82 Å and with Uiso(H) = 1.2 Ueq(C)for carbon-bound or 1.5 Ueq (O) for oxygen-bound H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with displacement ellipsoids drawn at the 30% probability level. The intramolecular hydrogen bond is shown as a dashed line.

Crystal data

C20H20N2O F(000) = 648
Mr = 304.38 Dx = 1.243 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 3664 reflections
a = 9.966 (2) Å θ = 3.1–27.5°
b = 15.587 (3) Å µ = 0.08 mm1
c = 10.477 (2) Å T = 293 K
β = 91.60 (3)° Block, colourless
V = 1626.9 (6) Å3 0.38 × 0.32 × 0.27 mm
Z = 4

Data collection

Rigaku SCXmini CCD diffractometer 1857 independent reflections
Radiation source: fine-focus sealed tube 1361 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.067
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) h = −12→12
Tmin = 0.967, Tmax = 0.982 k = −20→20
8194 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0577P)2] where P = (Fo2 + 2Fc2)/3
1857 reflections (Δ/σ)max < 0.001
209 parameters Δρmax = 0.13 e Å3
2 restraints Δρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.0405 (4) 0.2124 (2) 0.2764 (4) 0.0609 (9)
H1A −0.1100 0.1705 0.2925 0.073*
H1B −0.0724 0.2515 0.2102 0.073*
C2 −0.0017 (5) 0.2605 (3) 0.3966 (4) 0.0862 (13)
H2A −0.0749 0.2599 0.4557 0.103*
H2B 0.0199 0.3196 0.3770 0.103*
C3 0.1203 (4) 0.2148 (3) 0.4541 (3) 0.0728 (11)
H3A 0.1014 0.1924 0.5381 0.087*
H3B 0.1964 0.2534 0.4614 0.087*
C4 0.1484 (4) 0.1422 (2) 0.3617 (3) 0.0560 (8)
H4A 0.2443 0.1341 0.3534 0.067*
H4B 0.1091 0.0890 0.3907 0.067*
C5 0.0588 (3) 0.09834 (19) 0.1473 (3) 0.0452 (7)
H5 −0.0119 0.0622 0.1820 0.054*
C6 0.1826 (3) 0.04266 (18) 0.1305 (3) 0.0447 (7)
C7 0.1969 (3) −0.0334 (2) 0.1964 (3) 0.0575 (8)
H7 0.1296 −0.0480 0.2522 0.069*
C8 0.3946 (4) −0.0638 (2) 0.1086 (4) 0.0711 (10)
H8 0.4690 −0.0994 0.1020 0.085*
C9 0.3914 (4) 0.0095 (2) 0.0368 (4) 0.0701 (10)
H9 0.4606 0.0225 −0.0178 0.084*
C10 0.2826 (3) 0.0636 (2) 0.0475 (4) 0.0587 (9)
H10 0.2768 0.1137 −0.0007 0.070*
C11 0.0069 (3) 0.13455 (19) 0.0201 (3) 0.0457 (7)
C12 0.0554 (3) 0.2112 (2) −0.0248 (3) 0.0521 (8)
C13 0.0112 (3) 0.2441 (2) −0.1444 (3) 0.0596 (9)
H13 0.0478 0.2949 −0.1744 0.072*
C14 −0.0833 (4) 0.2028 (2) −0.2156 (3) 0.0626 (10)
H14 −0.1114 0.2256 −0.2939 0.075*
C15 −0.1403 (3) 0.1251 (2) −0.1726 (3) 0.0528 (8)
C16 −0.2440 (4) 0.0822 (3) −0.2422 (3) 0.0635 (10)
H16 −0.2781 0.1066 −0.3174 0.076*
C17 −0.2945 (4) 0.0070 (3) −0.2023 (4) 0.0688 (10)
H17 −0.3624 −0.0202 −0.2498 0.083*
C18 −0.2443 (3) −0.0301 (2) −0.0888 (3) 0.0614 (9)
H18 −0.2789 −0.0822 −0.0614 0.074*
C19 −0.1451 (3) 0.0095 (2) −0.0180 (3) 0.0526 (8)
H19 −0.1118 −0.0168 0.0560 0.063*
C20 −0.0921 (3) 0.08934 (19) −0.0545 (3) 0.0465 (7)
N1 0.0857 (3) 0.16953 (15) 0.2391 (2) 0.0476 (6)
N2 0.2995 (3) −0.08781 (18) 0.1867 (3) 0.0720 (9)
O1 0.1471 (2) 0.25894 (14) 0.0428 (2) 0.0616 (6)
H1 0.1554 0.2398 0.1155 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.061 (2) 0.0530 (18) 0.070 (2) 0.0123 (16) 0.0124 (17) 0.0068 (17)
C2 0.105 (4) 0.079 (3) 0.076 (3) 0.026 (3) 0.019 (3) −0.005 (2)
C3 0.091 (3) 0.072 (2) 0.055 (2) 0.002 (2) 0.007 (2) −0.0058 (18)
C4 0.065 (2) 0.0566 (19) 0.0461 (17) 0.0057 (16) −0.0002 (15) 0.0067 (15)
C5 0.0402 (15) 0.0456 (18) 0.0496 (16) −0.0014 (13) −0.0030 (13) 0.0079 (13)
C6 0.0420 (16) 0.0414 (15) 0.0502 (16) −0.0009 (13) −0.0074 (13) 0.0022 (13)
C7 0.055 (2) 0.0502 (18) 0.067 (2) 0.0037 (15) −0.0013 (16) 0.0044 (16)
C8 0.057 (2) 0.062 (2) 0.094 (3) 0.0183 (18) −0.012 (2) −0.006 (2)
C9 0.051 (2) 0.073 (2) 0.087 (3) 0.0090 (17) 0.0106 (19) −0.001 (2)
C10 0.0516 (19) 0.0483 (18) 0.076 (2) 0.0023 (15) 0.0050 (18) 0.0067 (17)
C11 0.0413 (16) 0.0467 (18) 0.0490 (17) 0.0039 (13) −0.0009 (14) 0.0079 (13)
C12 0.0474 (18) 0.0503 (19) 0.059 (2) 0.0009 (14) 0.0017 (16) 0.0061 (15)
C13 0.065 (2) 0.056 (2) 0.058 (2) 0.0037 (17) 0.0039 (18) 0.0202 (16)
C14 0.068 (2) 0.070 (2) 0.0501 (19) 0.0148 (18) −0.0006 (18) 0.0165 (17)
C15 0.0473 (17) 0.0655 (19) 0.0453 (17) 0.0141 (16) −0.0021 (14) 0.0004 (15)
C16 0.061 (2) 0.078 (3) 0.0500 (19) 0.0149 (19) −0.0091 (18) −0.0046 (18)
C17 0.062 (2) 0.080 (3) 0.063 (2) 0.001 (2) −0.0129 (18) −0.016 (2)
C18 0.054 (2) 0.068 (2) 0.062 (2) −0.0062 (16) −0.0013 (18) −0.0053 (18)
C19 0.0503 (18) 0.0544 (18) 0.0529 (18) 0.0018 (14) −0.0016 (15) 0.0019 (15)
C20 0.0382 (15) 0.0534 (17) 0.0479 (16) 0.0102 (13) 0.0027 (13) 0.0026 (13)
N1 0.0490 (14) 0.0443 (13) 0.0497 (14) 0.0044 (11) 0.0034 (12) 0.0036 (11)
N2 0.067 (2) 0.0563 (19) 0.092 (2) 0.0165 (16) −0.0065 (19) 0.0065 (17)
O1 0.0666 (15) 0.0538 (13) 0.0643 (14) −0.0110 (12) −0.0020 (13) 0.0119 (11)

Geometric parameters (Å, º)

C1—N1 1.486 (4) C8—H8 0.9300
C1—C2 1.506 (6) C9—C10 1.381 (5)
C1—H1A 0.9700 C9—H9 0.9300
C1—H1B 0.9700 C10—H10 0.9300
C2—C3 1.520 (6) C11—C12 1.376 (4)
C2—H2A 0.9700 C11—C20 1.427 (4)
C2—H2B 0.9700 C12—O1 1.362 (4)
C3—C4 1.520 (5) C12—C13 1.413 (4)
C3—H3A 0.9700 C13—C14 1.349 (5)
C3—H3B 0.9700 C13—H13 0.9300
C4—N1 1.476 (4) C14—C15 1.416 (5)
C4—H4A 0.9700 C14—H14 0.9300
C4—H4B 0.9700 C15—C16 1.416 (5)
C5—N1 1.488 (4) C15—C20 1.428 (4)
C5—C6 1.523 (4) C16—C17 1.347 (5)
C5—C11 1.524 (4) C16—H16 0.9300
C5—H5 0.9800 C17—C18 1.402 (5)
C6—C7 1.377 (4) C17—H17 0.9300
C6—C10 1.380 (4) C18—C19 1.367 (5)
C7—N2 1.334 (4) C18—H18 0.9300
C7—H7 0.9300 C19—C20 1.409 (4)
C8—N2 1.324 (5) C19—H19 0.9300
C8—C9 1.368 (6) O1—H1 0.8200
N1—C1—C2 104.2 (3) C8—C9—H9 120.9
N1—C1—H1A 110.9 C10—C9—H9 120.9
C2—C1—H1A 110.9 C6—C10—C9 119.3 (3)
N1—C1—H1B 110.9 C6—C10—H10 120.4
C2—C1—H1B 110.9 C9—C10—H10 120.4
H1A—C1—H1B 108.9 C12—C11—C20 119.0 (3)
C1—C2—C3 106.4 (3) C12—C11—C5 120.4 (3)
C1—C2—H2A 110.5 C20—C11—C5 120.6 (2)
C3—C2—H2A 110.5 O1—C12—C11 122.2 (3)
C1—C2—H2B 110.5 O1—C12—C13 116.8 (3)
C3—C2—H2B 110.5 C11—C12—C13 121.0 (3)
H2A—C2—H2B 108.6 C14—C13—C12 120.8 (3)
C2—C3—C4 104.8 (3) C14—C13—H13 119.6
C2—C3—H3A 110.8 C12—C13—H13 119.6
C4—C3—H3A 110.8 C13—C14—C15 120.8 (3)
C2—C3—H3B 110.8 C13—C14—H14 119.6
C4—C3—H3B 110.8 C15—C14—H14 119.6
H3A—C3—H3B 108.9 C16—C15—C14 122.3 (3)
N1—C4—C3 105.0 (3) C16—C15—C20 119.0 (3)
N1—C4—H4A 110.7 C14—C15—C20 118.8 (3)
C3—C4—H4A 110.7 C17—C16—C15 121.7 (3)
N1—C4—H4B 110.7 C17—C16—H16 119.1
C3—C4—H4B 110.7 C15—C16—H16 119.2
H4A—C4—H4B 108.8 C16—C17—C18 119.6 (3)
N1—C5—C6 111.6 (2) C16—C17—H17 120.2
N1—C5—C11 109.8 (2) C18—C17—H17 120.2
C6—C5—C11 111.5 (2) C19—C18—C17 120.6 (4)
N1—C5—H5 107.9 C19—C18—H18 119.7
C6—C5—H5 107.9 C17—C18—H18 119.7
C11—C5—H5 107.9 C18—C19—C20 121.5 (3)
C7—C6—C10 116.9 (3) C18—C19—H19 119.2
C7—C6—C5 120.4 (3) C20—C19—H19 119.2
C10—C6—C5 122.6 (3) C19—C20—C11 123.1 (3)
N2—C7—C6 125.3 (3) C19—C20—C15 117.4 (3)
N2—C7—H7 117.3 C11—C20—C15 119.5 (3)
C6—C7—H7 117.3 C4—N1—C1 104.0 (2)
N2—C8—C9 124.8 (3) C4—N1—C5 114.3 (2)
N2—C8—H8 117.6 C1—N1—C5 111.5 (3)
C9—C8—H8 117.6 C8—N2—C7 115.5 (3)
C8—C9—C10 118.1 (4) C12—O1—H1 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.85 2.572 (3) 147

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2063).

References

  1. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Wang, W. (2012). Acta Cryst. E68, o884. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033363/mw2063sup1.cif

e-68-o2614-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033363/mw2063Isup2.hkl

e-68-o2614-Isup2.hkl (91.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033363/mw2063Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES