Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 1;68(Pt 9):o2622. doi: 10.1107/S1600536812033740

5-Hy­droxy-2-{(E)-[(3-nitro­phen­yl)iminio]meth­yl}phenolate

Muhammad Ashraf Shaheen a, M Nawaz Tahir b,*, Rana Muhammad Irfan a, Shahid Iqbal a, Saeed Ahmad c
PMCID: PMC3435650  PMID: 22969523

Abstract

The title compound, C13H10N2O4, crystallized as the zwitterionic tautomer. As a result, the phenolate C—O bond [1.296 (2) Å] is shorter than a normal Csp 2—O(H) bond, and the azomethine C=N bond [1.314 (2) Å] is longer than a normal C=N double bond. The mol­ecule is nearly planar, the mean plane of the nitro-substituted benzene ring forming dihedral angles of 9.83 (7) and 8.45 (9)° with the other benzene ring and with the nitro group, respectively. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, strong O—H⋯O hydrogen bonds link the mol­ecules into double-stranded chains along the b-axis direction. Within the chains there are π–π interactions involving the benzene rings of adjacent molecules [centroid–centroid distance = 3.669 (1) Å]. The chains are linked via C—H⋯O hydrogen bonds, forming R 2 1(6), R 2 1(7) and R 2 2(10) ring motifs.

Related literature  

For related structures, see: Yeap et al. (1992); Hijji et al. (2009). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995).graphic file with name e-68-o2622-scheme1.jpg

Experimental  

Crystal data  

  • C13H10N2O4

  • M r = 258.23

  • Monoclinic, Inline graphic

  • a = 12.8518 (9) Å

  • b = 7.8501 (5) Å

  • c = 24.1316 (18) Å

  • β = 101.593 (3)°

  • V = 2384.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.22 mm

Data collection  

  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.975, T max = 0.985

  • 5601 measured reflections

  • 2126 independent reflections

  • 1569 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.105

  • S = 1.02

  • 2126 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033740/yk2068sup1.cif

e-68-o2622-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033740/yk2068Isup2.hkl

e-68-o2622-Isup2.hkl (102.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033740/yk2068Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.86 1.87 2.5716 (19) 138
O4—H4A⋯O3i 0.82 1.79 2.6100 (17) 179
C2—H2⋯O2ii 0.93 2.54 3.446 (2) 164
C4—H4⋯O4iii 0.93 2.54 3.268 (2) 135
C7—H7⋯O2ii 0.93 2.49 3.355 (2) 154
C10—H10⋯O3i 0.93 2.56 3.226 (2) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

supplementary crystallographic information

Comment

The title compound (Fig. 1) has been synthesized as a precursor for complex formation and other studies.

In contrast to the closely related structure of 2-[(3-nitrophenylimino)methyl]phenol (Yeap et al., 1992), the title compound is a zwitterion, in which the hydroxy H+ ion is transferred to the imino N atom (Fig. 1). Analogous zwitterionic structure is observed for 2-{[(2-hydroxy-5-nitrophenyl)iminio]methyl}phenolate (Hijji et al., 2009).

The molecule consists of two roughly planar groups, the 3-nitroaniline fragment (C1—C6/N1/N2/O1/O2) and the rest of 2,4-dihydroxybenzaldehyde (C7—C13/O3/O4), the mean deviations from the planes are 0.070Å and 0.023Å, respectively. The dihedral angle between the planes of these groups is 9.37 (6)°.

Strong intramolecular N—H···O hydrogen bond (Table 1, Fig. 2) produce S(6) ring motif (Bernstein et al., 1995). Due to the intermolecular O—H···O hydrogen bonds, the C(6) chains along the b-axis direction are formed (Table 1, Fig. 2). The C—H···O interactions join these chains, generating the R21(7) and R22(10) rings. motifs. Due to the C—H···O and O—H···O hydrogen bonds, the R21(6) ring motif is also formed (Table 1, Fig. 2).

Experimental

3-Nitroaniline (0.138 g, 1.0 mmol) was dissolved in distilled methanol. Solution of 2,4-dihydroxybenzaldehyde (0.138 g, 1.0 mmol) in methanol was added dropwise. The mixture was refluxed for 2 h and orange prisms of the title compound were obtained after 48 h.

Refinement

At initial stages, all H atoms were refined freely, indicating the zwitterion structure. Later, all H atoms were positioned geometrically at C—H = 0.93, N—H = 0.86 and O—H = 0.82 Å, respectively, and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for hydroxy and x = 1.2 for other H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom-numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The packing diagram showing the chains along the [010] direction and various ring motifs.

Crystal data

C13H10N2O4 F(000) = 1072
Mr = 258.23 Dx = 1.438 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1569 reflections
a = 12.8518 (9) Å θ = 3.1–25.3°
b = 7.8501 (5) Å µ = 0.11 mm1
c = 24.1316 (18) Å T = 296 K
β = 101.593 (3)° Prism, orange
V = 2384.9 (3) Å3 0.30 × 0.25 × 0.22 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer 2126 independent reflections
Radiation source: fine-focus sealed tube 1569 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
Detector resolution: 8.10 pixels mm-1 θmax = 25.3°, θmin = 3.1°
ω scans h = −15→15
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −9→8
Tmin = 0.975, Tmax = 0.985 l = −28→27
5601 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.8634P] where P = (Fo2 + 2Fc2)/3
2126 reflections (Δ/σ)max < 0.001
173 parameters Δρmax = 0.13 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.15456 (11) −0.19142 (18) 0.02818 (6) 0.0662 (5)
O2 0.20746 (12) 0.03661 (18) −0.00681 (6) 0.0724 (6)
O3 0.62612 (10) 0.43187 (15) 0.22353 (5) 0.0534 (4)
O4 0.76284 (11) 0.95669 (16) 0.17361 (5) 0.0575 (5)
N1 0.21457 (12) −0.0694 (2) 0.03061 (7) 0.0496 (6)
N2 0.49661 (11) 0.26941 (19) 0.14644 (6) 0.0474 (5)
C1 0.43511 (13) 0.1203 (2) 0.13474 (7) 0.0410 (6)
C2 0.35653 (14) 0.1006 (2) 0.08681 (7) 0.0421 (6)
C3 0.29944 (13) −0.0494 (2) 0.08125 (7) 0.0414 (6)
C4 0.31558 (15) −0.1781 (2) 0.12040 (8) 0.0481 (6)
C5 0.39528 (16) −0.1569 (3) 0.16724 (8) 0.0530 (7)
C6 0.45478 (14) −0.0106 (3) 0.17409 (7) 0.0487 (6)
C7 0.50024 (13) 0.4025 (2) 0.11385 (7) 0.0447 (6)
C8 0.56478 (13) 0.5432 (2) 0.13102 (7) 0.0405 (6)
C9 0.62972 (13) 0.5521 (2) 0.18714 (7) 0.0403 (6)
C10 0.69554 (13) 0.6942 (2) 0.20049 (7) 0.0406 (6)
C11 0.69865 (13) 0.8209 (2) 0.16195 (7) 0.0416 (6)
C12 0.63360 (14) 0.8146 (2) 0.10705 (7) 0.0461 (6)
C13 0.56882 (14) 0.6792 (2) 0.09292 (7) 0.0459 (6)
H2 0.34268 0.18528 0.05936 0.0505*
H2A 0.53731 0.27396 0.17938 0.0569*
H4 0.27414 −0.27611 0.11547 0.0578*
H4A 0.79725 0.94912 0.20604 0.0862*
H5 0.40893 −0.24223 0.19446 0.0636*
H6 0.50928 0.00111 0.20566 0.0584*
H7 0.45787 0.40280 0.07774 0.0536*
H10 0.73819 0.70276 0.23640 0.0487*
H12 0.63551 0.90201 0.08126 0.0553*
H13 0.52555 0.67518 0.05708 0.0551*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0630 (9) 0.0603 (9) 0.0709 (10) −0.0201 (8) 0.0033 (7) −0.0121 (7)
O2 0.0882 (12) 0.0606 (9) 0.0540 (9) −0.0102 (8) −0.0198 (8) 0.0103 (8)
O3 0.0592 (8) 0.0484 (7) 0.0437 (8) −0.0070 (6) −0.0110 (6) 0.0081 (6)
O4 0.0692 (9) 0.0485 (8) 0.0460 (8) −0.0139 (7) −0.0092 (6) 0.0048 (6)
N1 0.0527 (10) 0.0446 (9) 0.0478 (10) −0.0009 (8) 0.0010 (7) −0.0077 (8)
N2 0.0451 (9) 0.0506 (9) 0.0399 (9) −0.0003 (8) −0.0072 (6) −0.0014 (7)
C1 0.0396 (10) 0.0429 (10) 0.0386 (10) 0.0018 (8) 0.0037 (7) −0.0030 (8)
C2 0.0469 (10) 0.0370 (10) 0.0389 (10) 0.0026 (8) 0.0002 (8) 0.0031 (7)
C3 0.0418 (10) 0.0400 (10) 0.0401 (10) 0.0022 (8) 0.0031 (8) −0.0036 (8)
C4 0.0514 (11) 0.0426 (10) 0.0510 (11) 0.0008 (9) 0.0117 (9) 0.0057 (9)
C5 0.0567 (12) 0.0538 (12) 0.0484 (12) 0.0081 (10) 0.0103 (9) 0.0167 (9)
C6 0.0469 (11) 0.0619 (12) 0.0347 (10) 0.0056 (10) 0.0023 (8) 0.0053 (9)
C7 0.0391 (10) 0.0532 (11) 0.0374 (10) 0.0041 (9) −0.0025 (8) −0.0024 (9)
C8 0.0368 (9) 0.0432 (10) 0.0378 (10) 0.0029 (8) −0.0016 (7) −0.0044 (8)
C9 0.0391 (10) 0.0399 (10) 0.0385 (10) 0.0062 (8) −0.0002 (7) 0.0001 (8)
C10 0.0414 (10) 0.0429 (10) 0.0318 (9) 0.0022 (8) −0.0059 (7) −0.0033 (8)
C11 0.0429 (10) 0.0391 (10) 0.0403 (10) 0.0018 (8) 0.0024 (8) −0.0024 (8)
C12 0.0514 (11) 0.0479 (11) 0.0356 (10) 0.0027 (9) 0.0007 (8) 0.0050 (8)
C13 0.0462 (11) 0.0528 (11) 0.0337 (10) 0.0048 (9) −0.0040 (8) 0.0004 (8)

Geometric parameters (Å, º)

O1—N1 1.224 (2) C7—C8 1.393 (2)
O2—N1 1.218 (2) C8—C13 1.417 (2)
O3—C9 1.296 (2) C8—C9 1.443 (2)
O4—C11 1.343 (2) C9—C10 1.398 (2)
O4—H4A 0.8200 C10—C11 1.368 (2)
N1—C3 1.474 (2) C11—C12 1.418 (2)
N2—C7 1.314 (2) C12—C13 1.351 (2)
N2—C1 1.409 (2) C2—H2 0.9300
N2—H2A 0.8600 C4—H4 0.9300
C1—C6 1.388 (3) C5—H5 0.9300
C1—C2 1.383 (2) C6—H6 0.9300
C2—C3 1.380 (2) C7—H7 0.9300
C3—C4 1.370 (2) C10—H10 0.9300
C4—C5 1.375 (3) C12—H12 0.9300
C5—C6 1.371 (3) C13—H13 0.9300
C11—O4—H4A 109.00 C8—C9—C10 117.65 (14)
O1—N1—O2 123.14 (17) C9—C10—C11 121.51 (15)
O1—N1—C3 118.52 (15) O4—C11—C12 116.45 (14)
O2—N1—C3 118.35 (15) O4—C11—C10 122.38 (15)
C1—N2—C7 128.80 (15) C10—C11—C12 121.17 (15)
C7—N2—H2A 116.00 C11—C12—C13 118.74 (15)
C1—N2—H2A 116.00 C8—C13—C12 122.02 (16)
N2—C1—C2 123.13 (15) C1—C2—H2 121.00
N2—C1—C6 117.42 (15) C3—C2—H2 121.00
C2—C1—C6 119.45 (16) C3—C4—H4 121.00
C1—C2—C3 117.49 (15) C5—C4—H4 121.00
N1—C3—C2 117.52 (14) C4—C5—H5 120.00
N1—C3—C4 118.52 (15) C6—C5—H5 120.00
C2—C3—C4 123.95 (16) C1—C6—H6 119.00
C3—C4—C5 117.53 (17) C5—C6—H6 119.00
C4—C5—C6 120.39 (19) N2—C7—H7 119.00
C1—C6—C5 121.15 (16) C8—C7—H7 119.00
N2—C7—C8 122.88 (15) C9—C10—H10 119.00
C7—C8—C13 120.11 (15) C11—C10—H10 119.00
C7—C8—C9 121.00 (15) C11—C12—H12 121.00
C9—C8—C13 118.88 (15) C13—C12—H12 121.00
O3—C9—C8 120.53 (14) C8—C13—H13 119.00
O3—C9—C10 121.82 (15) C12—C13—H13 119.00
O1—N1—C3—C2 −171.10 (16) C4—C5—C6—C1 1.1 (3)
O1—N1—C3—C4 7.6 (2) N2—C7—C8—C9 −1.9 (3)
O2—N1—C3—C2 8.8 (2) N2—C7—C8—C13 177.02 (16)
O2—N1—C3—C4 −172.56 (17) C7—C8—C9—O3 −2.7 (3)
C7—N2—C1—C2 −8.0 (3) C7—C8—C9—C10 177.49 (16)
C7—N2—C1—C6 172.80 (17) C13—C8—C9—O3 178.36 (16)
C1—N2—C7—C8 179.59 (16) C13—C8—C9—C10 −1.5 (2)
N2—C1—C2—C3 −177.80 (16) C7—C8—C13—C12 −177.19 (17)
C6—C1—C2—C3 1.4 (3) C9—C8—C13—C12 1.8 (3)
N2—C1—C6—C5 177.00 (17) O3—C9—C10—C11 −179.76 (16)
C2—C1—C6—C5 −2.2 (3) C8—C9—C10—C11 0.1 (2)
C1—C2—C3—N1 179.08 (15) C9—C10—C11—O4 −178.67 (16)
C1—C2—C3—C4 0.5 (3) C9—C10—C11—C12 1.1 (3)
N1—C3—C4—C5 179.88 (17) O4—C11—C12—C13 178.96 (16)
C2—C3—C4—C5 −1.6 (3) C10—C11—C12—C13 −0.9 (3)
C3—C4—C5—C6 0.7 (3) C11—C12—C13—C8 −0.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3 0.86 1.87 2.5716 (19) 138
O4—H4A···O3i 0.82 1.79 2.6100 (17) 179
C2—H2···O2ii 0.93 2.54 3.446 (2) 164
C4—H4···O4iii 0.93 2.54 3.268 (2) 135
C7—H7···O2ii 0.93 2.49 3.355 (2) 154
C10—H10···O3i 0.93 2.56 3.226 (2) 129

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+1/2, −y+1/2, −z; (iii) x−1/2, y−3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2068).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Hijji, Y. M., Barare, B., Butcher, R. J. & Jasinski, J. P. (2009). Acta Cryst. E65, o291–o292. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Yeap, G.-Y., Gan, C.-L., Fun, H.-K., Shawkataly, O. & Teoh, S.-G. (1992). Acta Cryst. C48, 1143–1144.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033740/yk2068sup1.cif

e-68-o2622-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033740/yk2068Isup2.hkl

e-68-o2622-Isup2.hkl (102.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033740/yk2068Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES