Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 1;68(Pt 9):o2624. doi: 10.1107/S1600536812027870

(10E,12E,14E)-9,16-Dioxoocta­deca-10,12,14-trienoic acid

Lise Bréant a,*, Catherine Vonthron-Sénécheau a, Lydia Brelot b, Annelise Lobstein a
PMCID: PMC3435652  PMID: 22969525

Abstract

The title octa­deca­trienoic acid derivative, C18H26O4, was isolated from Silene maritima With. (Caryophyllaceae), the first time this natural compound has been found in the Caryophyllales order. This fatty acid has an 18-carbon backbone with three double bonds on trans (E) conformation and two carbonyl. In the crystal, molecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers.

Related literature  

For botanical information about Silene maritima With., see: Baker (1978); Bremer et al. (2009). For interactions between heavy-metals and Silene maritima With., see: Price & Abrahams (1994). For phytochemical investigation on Silene maritima With., see: Adrian-Romero et al. (1998). For previous descriptions of the title compound, see: Herz & Kulanthaivel (1984); Li et al. (2011). For lipoxygenase action on α-linoleic acid, see: Vellosillo et al. (2007). For environmental-stress-response involvement of oxylipines and their structure similarity with the title compound, see: Browse (2005); Schaller et al. (2004); Wasternack (2007). graphic file with name e-68-o2624-scheme1.jpg

Experimental  

Crystal data  

  • C18H26O4

  • M r = 306.39

  • Triclinic, Inline graphic

  • a = 5.6859 (3) Å

  • b = 7.7535 (5) Å

  • c = 19.9045 (16) Å

  • α = 81.333 (4)°

  • β = 84.152 (4)°

  • γ = 87.660 (4)°

  • V = 862.68 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.40 × 0.30 × 0.10 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 8217 measured reflections

  • 3846 independent reflections

  • 2648 reflections with I > 2σ(I)

  • R int = 0.063

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.189

  • S = 1.06

  • 3846 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027870/zj2081sup1.cif

e-68-o2624-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027870/zj2081Isup2.hkl

e-68-o2624-Isup2.hkl (184.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027870/zj2081Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.90 (4) 1.78 (4) 2.658 (2) 167.0 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Dr J. Suffert for his help in crystallizing the compound.

supplementary crystallographic information

Comment

Silene maritima With. belongs to the Caryophyllaceae family (Bremer et al., 2009) and is a perennial species found on cliffs and shingle beaches in coastal habitats (Baker, 1978). This species is known to be a heavy-metal indicator (Price & Abrahams, 1994), and the only phytochemical investigation previously carried out on its aerial parts has revealed the presence of glycinebetaine, a compound used by cells for protection against osmotic stress (Adrian-Romero et al., 1998).

This study is the first report of the presence of 9,16-dioxo-10E,12E,14E octadecatrienoic acid in the Caryophyllales order. This compound has previously been described only in the Asteraceae (Herz & Kulanthaivel, 1984) and Lamiaceae (Li et al., 2011) families.

Its molecular structure contains an 18-carbon backbone with three double bonds in the trans conformation and two carbonyls (Fig. 1). The existence of intermolecular hydrogen interactions between two carboxylic functions was also observed (Fig. 2). The structure of this fatty acid might involve a lipoxygenase action on the α-linoleic acid (Vellosillo et al., 2007). Thus suggesting that it could belong to oxylipines, a class of compounds implicated in environmental stress responses (Browse, 2005; Schaller et al., 2004; Wasternack, 2007).

Experimental

The sampling station is situated in the littoral zone of the western coast of Brittany (Brélès 29, France). Sampling was carried out in July 2008. The aerial parts of the plant were collected, air-dried, and grinded into a fine powder using a grinder (Retsch, ZM 200). Hydroalcoholic extract of aerial parts (1 kg) was prepared by soaking it at room temperature in 3 x 10 l of EtOH/H2O (6/4, v/v) during first 14 h, then 4 h and again 4 h, until exhaustion of raw materials. The extract was then filtered and dried under vacuum using a rotavapor. The amorphous solid, a black-brownish mass, was then dissolved in d-H2O and extracted sequentially with cyclohexane, CH2Cl2, AcOEt and n-BuOH. The CH2Cl2 extract (2.496 g) was fractionated on a silica gel column (SI60 0.050–0.16 mm in size, Merck) eluted successively with cyclohexane (500 ml), AcOEt (1170 ml) and MeOH (330 ml) to yield five main fractions. The third fraction (210 mg) was re-dissolved in MeOH and subjected to semi-preparative HPLC purification (Gilson, binary solvent system). The isolation was performed with a reverse phase Nucleodur C18 ec (250 mm x 21 mm, 5 µm) from Macherey-Nagel. Eluent A was H2O with 0.01% HCOOH, and eluent B was ACN. The flow rate was 10 ml/min and the injection volume was 400 µl at 40 mg ml-1. The elution conditions applied were: 0–5 min, linear gradient from 10% to 15% B; 5–55 min, 15% to 65% B; 55–60 min, 65% to 100% B; 60–70 min, 100% B isocratic. Simultaneous UV monitoring was set at 316 nm. This experimental procedure allowed us to isolate the title compound C18H26O4 at the retention time of 26 min. The pure compound (1 mg) was re-dissolved in 0.2 ml of MeOH/CHCl3 (2/1). The corresponding crystals of 9,16-dioxo-10E,12E,14E octadecatrienoic acid were grown thanks to a slow solubility decrease during two weeks at room temperature after addition of n-heptane (0.4 ml).

Refinement

The H atoms, except for the H-atom of the carboxyl group which was located from Fourier difference maps, were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP representation of 9,16-dioxo-10E,12E,14E octadecatrienoic acid with 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Packing diagram of four molecules of 9,16-dioxo-10E,12E,14E octadecatrienoic acid.

Crystal data

C18H26O4 Z = 2
Mr = 306.39 F(000) = 332
Triclinic, P1 Dx = 1.180 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.6859 (3) Å Cell parameters from 12739 reflections
b = 7.7535 (5) Å θ = 1.0–27.5°
c = 19.9045 (16) Å µ = 0.08 mm1
α = 81.333 (4)° T = 173 K
β = 84.152 (4)° Plate, colorless
γ = 87.660 (4)° 0.40 × 0.30 × 0.10 mm
V = 862.68 (10) Å3

Data collection

Nonius KappaCCD diffractometer 2648 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.063
Graphite monochromator θmax = 27.5°, θmin = 1.0°
phi and ω scans h = −7→7
8217 measured reflections k = −10→10
3846 independent reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0932P)2 + 0.1679P] where P = (Fo2 + 2Fc2)/3
3846 reflections (Δ/σ)max < 0.001
204 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.7412 (3) 0.9602 (2) 0.07113 (9) 0.0370 (4)
C2 1.5281 (3) 0.9351 (3) 0.12198 (10) 0.0426 (5)
H2A 1.3914 0.9132 0.0977 0.051*
H2B 1.4935 1.0453 0.1410 0.051*
C3 1.5485 (3) 0.7882 (2) 0.18074 (9) 0.0355 (4)
H3A 1.6700 0.8163 0.2094 0.043*
H3B 1.5999 0.6793 0.1625 0.043*
C4 1.3134 (3) 0.7601 (2) 0.22433 (9) 0.0371 (4)
H4A 1.2613 0.8705 0.2413 0.044*
H4B 1.1935 0.7311 0.1954 0.044*
C5 1.3238 (3) 0.6162 (2) 0.28491 (9) 0.0349 (4)
H5A 1.4352 0.6489 0.3157 0.042*
H5B 1.3859 0.5074 0.2684 0.042*
C6 1.0834 (3) 0.5817 (2) 0.32511 (9) 0.0344 (4)
H6A 1.0212 0.6904 0.3417 0.041*
H6B 0.9720 0.5489 0.2944 0.041*
C7 1.0945 (3) 0.4374 (2) 0.38581 (9) 0.0332 (4)
H7A 1.2019 0.4722 0.4173 0.040*
H7B 1.1622 0.3300 0.3693 0.040*
C8 0.8539 (3) 0.3977 (2) 0.42492 (8) 0.0310 (4)
H8A 0.7810 0.5074 0.4381 0.037*
H8B 0.7506 0.3545 0.3942 0.037*
C9 0.8631 (3) 0.2648 (2) 0.48833 (9) 0.0295 (4)
C10 0.6343 (3) 0.2012 (2) 0.52376 (8) 0.0300 (4)
H10 0.4917 0.2397 0.5045 0.036*
C11 0.6245 (3) 0.0905 (2) 0.58252 (9) 0.0299 (4)
H11 0.7696 0.0515 0.6002 0.036*
C12 0.4081 (3) 0.0265 (2) 0.62080 (9) 0.0298 (4)
H12 0.2623 0.0608 0.6027 0.036*
C13 0.4038 (3) −0.0797 (2) 0.68114 (9) 0.0303 (4)
H13 0.5503 −0.1168 0.6984 0.036*
C14 0.1889 (3) −0.1398 (2) 0.72083 (8) 0.0291 (4)
H14 0.0433 −0.1026 0.7031 0.035*
C15 0.1797 (3) −0.2443 (2) 0.78105 (9) 0.0318 (4)
H15 0.3235 −0.2847 0.7992 0.038*
C16 −0.0463 (3) −0.2989 (2) 0.82020 (9) 0.0295 (4)
C17 −0.0310 (3) −0.4111 (3) 0.88816 (10) 0.0420 (5)
H17A 0.0712 −0.3535 0.9150 0.050*
H17B 0.0468 −0.5239 0.8804 0.050*
C18 −0.2653 (4) −0.4474 (3) 0.93005 (10) 0.0502 (5)
H18A −0.3392 −0.3374 0.9411 0.075*
H18B −0.2393 −0.5251 0.9724 0.075*
H18C −0.3693 −0.5032 0.9039 0.075*
O1 1.9060 (2) 0.85667 (18) 0.06800 (7) 0.0537 (4)
O2 1.7321 (3) 1.10716 (19) 0.02820 (8) 0.0565 (4)
O3 1.0497 (2) 0.21570 (18) 0.51052 (7) 0.0464 (4)
O4 −0.2355 (2) −0.25612 (17) 0.79837 (6) 0.0434 (4)
H2 1.868 (7) 1.118 (5) 0.001 (2) 0.140 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0422 (10) 0.0350 (9) 0.0294 (9) −0.0042 (8) 0.0027 (8) 0.0061 (7)
C2 0.0401 (10) 0.0458 (11) 0.0351 (10) −0.0011 (8) 0.0066 (8) 0.0093 (8)
C3 0.0367 (9) 0.0362 (9) 0.0293 (9) −0.0033 (7) 0.0052 (7) 0.0037 (7)
C4 0.0362 (10) 0.0399 (10) 0.0306 (9) −0.0047 (8) 0.0049 (7) 0.0050 (8)
C5 0.0352 (9) 0.0362 (9) 0.0299 (9) −0.0051 (7) 0.0042 (7) 0.0021 (7)
C6 0.0346 (9) 0.0356 (9) 0.0293 (9) −0.0053 (7) 0.0039 (7) 0.0041 (7)
C7 0.0310 (9) 0.0343 (9) 0.0308 (9) −0.0053 (7) 0.0030 (7) 0.0031 (7)
C8 0.0296 (9) 0.0340 (9) 0.0267 (9) −0.0050 (7) −0.0010 (7) 0.0041 (7)
C9 0.0275 (8) 0.0321 (9) 0.0274 (8) −0.0046 (7) −0.0020 (7) 0.0009 (7)
C10 0.0265 (8) 0.0342 (9) 0.0277 (9) −0.0034 (7) −0.0034 (7) 0.0023 (7)
C11 0.0253 (8) 0.0324 (9) 0.0303 (9) −0.0029 (7) −0.0032 (7) 0.0015 (7)
C12 0.0275 (8) 0.0322 (9) 0.0278 (9) −0.0026 (7) −0.0025 (7) 0.0027 (7)
C13 0.0259 (8) 0.0328 (9) 0.0299 (9) −0.0028 (7) −0.0028 (7) 0.0030 (7)
C14 0.0260 (8) 0.0311 (8) 0.0285 (9) −0.0011 (7) −0.0032 (7) 0.0017 (7)
C15 0.0253 (8) 0.0345 (9) 0.0324 (9) −0.0019 (7) −0.0035 (7) 0.0059 (7)
C16 0.0276 (8) 0.0291 (8) 0.0293 (9) −0.0010 (7) −0.0030 (7) 0.0034 (7)
C17 0.0349 (9) 0.0471 (11) 0.0369 (10) −0.0026 (8) −0.0018 (8) 0.0157 (8)
C18 0.0468 (12) 0.0550 (12) 0.0389 (11) −0.0009 (9) 0.0072 (9) 0.0176 (9)
O1 0.0502 (8) 0.0507 (8) 0.0466 (9) 0.0085 (7) 0.0175 (6) 0.0193 (7)
O2 0.0603 (10) 0.0444 (8) 0.0501 (9) 0.0071 (7) 0.0212 (7) 0.0200 (7)
O3 0.0292 (7) 0.0591 (9) 0.0442 (8) −0.0057 (6) −0.0048 (6) 0.0166 (6)
O4 0.0275 (6) 0.0587 (9) 0.0382 (7) −0.0020 (6) −0.0040 (5) 0.0127 (6)

Geometric parameters (Å, º)

C1—O1 1.211 (2) C9—O3 1.215 (2)
C1—O2 1.320 (2) C9—C10 1.481 (2)
C1—C2 1.497 (3) C10—C11 1.340 (2)
C2—C3 1.515 (2) C10—H10 0.9500
C2—H2A 0.9900 C11—C12 1.444 (2)
C2—H2B 0.9900 C11—H11 0.9500
C3—C4 1.522 (2) C12—C13 1.349 (2)
C3—H3A 0.9900 C12—H12 0.9500
C3—H3B 0.9900 C13—C14 1.440 (2)
C4—C5 1.519 (2) C13—H13 0.9500
C4—H4A 0.9900 C14—C15 1.339 (2)
C4—H4B 0.9900 C14—H14 0.9500
C5—C6 1.524 (2) C15—C16 1.476 (2)
C5—H5A 0.9900 C15—H15 0.9500
C5—H5B 0.9900 C16—O4 1.2161 (19)
C6—C7 1.522 (2) C16—C17 1.502 (2)
C6—H6A 0.9900 C17—C18 1.511 (3)
C6—H6B 0.9900 C17—H17A 0.9900
C7—C8 1.523 (2) C17—H17B 0.9900
C7—H7A 0.9900 C18—H18A 0.9800
C7—H7B 0.9900 C18—H18B 0.9800
C8—C9 1.508 (2) C18—H18C 0.9800
C8—H8A 0.9900 O2—H2 0.90 (4)
C8—H8B 0.9900
O1—C1—O2 122.25 (17) C7—C8—H8A 108.8
O1—C1—C2 124.48 (16) C9—C8—H8B 108.8
O2—C1—C2 113.26 (16) C7—C8—H8B 108.8
C1—C2—C3 115.59 (15) H8A—C8—H8B 107.7
C1—C2—H2A 108.4 O3—C9—C10 121.41 (15)
C3—C2—H2A 108.4 O3—C9—C8 121.50 (15)
C1—C2—H2B 108.4 C10—C9—C8 117.06 (14)
C3—C2—H2B 108.4 C11—C10—C9 121.25 (15)
H2A—C2—H2B 107.4 C11—C10—H10 119.4
C2—C3—C4 111.17 (15) C9—C10—H10 119.4
C2—C3—H3A 109.4 C10—C11—C12 124.38 (15)
C4—C3—H3A 109.4 C10—C11—H11 117.8
C2—C3—H3B 109.4 C12—C11—H11 117.8
C4—C3—H3B 109.4 C13—C12—C11 122.93 (15)
H3A—C3—H3B 108.0 C13—C12—H12 118.5
C5—C4—C3 113.63 (15) C11—C12—H12 118.5
C5—C4—H4A 108.8 C12—C13—C14 123.43 (15)
C3—C4—H4A 108.8 C12—C13—H13 118.3
C5—C4—H4B 108.8 C14—C13—H13 118.3
C3—C4—H4B 108.8 C15—C14—C13 124.62 (15)
H4A—C4—H4B 107.7 C15—C14—H14 117.7
C4—C5—C6 112.83 (15) C13—C14—H14 117.7
C4—C5—H5A 109.0 C14—C15—C16 122.26 (15)
C6—C5—H5A 109.0 C14—C15—H15 118.9
C4—C5—H5B 109.0 C16—C15—H15 118.9
C6—C5—H5B 109.0 O4—C16—C15 121.69 (15)
H5A—C5—H5B 107.8 O4—C16—C17 121.60 (15)
C7—C6—C5 112.67 (15) C15—C16—C17 116.71 (14)
C7—C6—H6A 109.1 C16—C17—C18 115.05 (15)
C5—C6—H6A 109.1 C16—C17—H17A 108.5
C7—C6—H6B 109.1 C18—C17—H17A 108.5
C5—C6—H6B 109.1 C16—C17—H17B 108.5
H6A—C6—H6B 107.8 C18—C17—H17B 108.5
C6—C7—C8 113.09 (14) H17A—C17—H17B 107.5
C6—C7—H7A 109.0 C17—C18—H18A 109.5
C8—C7—H7A 109.0 C17—C18—H18B 109.5
C6—C7—H7B 109.0 H18A—C18—H18B 109.5
C8—C7—H7B 109.0 C17—C18—H18C 109.5
H7A—C7—H7B 107.8 H18A—C18—H18C 109.5
C9—C8—C7 113.98 (14) H18B—C18—H18C 109.5
C9—C8—H8A 108.8 C1—O2—H2 109 (2)
O1—C1—C2—C3 12.6 (3) C8—C9—C10—C11 −176.26 (15)
O2—C1—C2—C3 −168.51 (16) C9—C10—C11—C12 178.37 (15)
C1—C2—C3—C4 −173.08 (16) C10—C11—C12—C13 −177.39 (16)
C2—C3—C4—C5 −179.00 (15) C11—C12—C13—C14 177.91 (15)
C3—C4—C5—C6 −176.13 (15) C12—C13—C14—C15 −179.56 (16)
C4—C5—C6—C7 −179.98 (14) C13—C14—C15—C16 178.72 (15)
C5—C6—C7—C8 −178.05 (14) C14—C15—C16—O4 2.6 (3)
C6—C7—C8—C9 −175.62 (14) C14—C15—C16—C17 −177.86 (16)
C7—C8—C9—O3 10.3 (3) O4—C16—C17—C18 −7.0 (3)
C7—C8—C9—C10 −171.76 (14) C15—C16—C17—C18 173.45 (16)
O3—C9—C10—C11 1.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.90 (4) 1.78 (4) 2.658 (2) 167.0 (4)

Symmetry code: (i) −x+4, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2081).

References

  1. Adrian-Romero, M., Wilson, S. J., Gerald, B., Yang, M.-H., Carabot-Cuervo, A. & Bashir, A. K. (1998). Biochem. Syst. Ecol. 26, 535–543.
  2. Baker, A. J. M. (1978). New Phytol. 81, 321–330.
  3. Bremer, B., Bremer, K., Chase, M. W., Fay, M. F., Reveal, J. L., Soltis, D. E., Soltis, P. S., Stevens, P. F., Anderberg, A. A., Moore, M. J., Olmstead, R. G., Rudall, P. J., Sytsma, K. J., Tank, D. C., Wurdack, K., Xiang, J. Q. Y. & Zmarzty, S. (2009). Bot. J. Linn. Soc. 161, 105–121.
  4. Browse, J. (2005). Vitam. Horm. (N.Y.), 72, 431–456. [DOI] [PubMed]
  5. Herz, W. & Kulanthaivel, P. (1984). Phytochemistry, 23, 1453–1459.
  6. Li, L. M., Pu, J. X., Xiao, W. L. & Sun, H. D. (2011). Arch. Pharmacal. Res. 34, 875–879. [DOI] [PubMed]
  7. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Price, G. C. & Abrahams, W. P. (1994). Environ. Geochem. Health, 16, 27–31. [DOI] [PubMed]
  10. Schaller, F., Schaller, A. & Stintzi, A. (2004). J. Plant Growth Regul. 23, 179–199.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Vellosillo, T., Martinez, M., Lopez, M. A., Vicente, J., Cascon, T., Dolan, L., Hamberg, M. & Castresana, C. (2007). Plant Cell, 19, 831–846. [DOI] [PMC free article] [PubMed]
  14. Wasternack, C. (2007). Ann. Bot. (Oxford, U.K.), 100, 681–697. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027870/zj2081sup1.cif

e-68-o2624-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027870/zj2081Isup2.hkl

e-68-o2624-Isup2.hkl (184.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027870/zj2081Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES