Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 4;68(Pt 9):o2629. doi: 10.1107/S1600536812033843

2-[(E)-(Naphthalen-2-yl)imino­meth­yl]phenol

Hafiz Muhammad Adeel Sharif a, Dildar Ahmed Alvi a, S Yousuf b,*
PMCID: PMC3435657  PMID: 22969530

Abstract

In the title compound, C17H13NO, the azomethine double bond adopts an E conformation. The naphthyl ring system and the benzene ring form a dihedral angle of 8.09 (10)°. The near-planar conformation of the molecule is consolidated by an intra­molecular O—H⋯N hydrogen bond, which forms an S(6) ring. In the crystal, mol­ecules are arranged in a zigzag fashion parallel to the c axis.

Related literature  

For the biological activity of Schiff bases, see: Khan et al. (2009). For the crystal structure of a closely related Schiff base, see: Aslam et al. (2012).graphic file with name e-68-o2629-scheme1.jpg

Experimental  

Crystal data  

  • C17H13NO

  • M r = 247.28

  • Orthorhombic, Inline graphic

  • a = 13.6348 (17) Å

  • b = 5.8768 (7) Å

  • c = 15.869 (2) Å

  • V = 1271.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 K

  • 0.15 × 0.13 × 0.10 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.988, T max = 0.992

  • 6852 measured reflections

  • 2300 independent reflections

  • 1655 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.089

  • S = 1.00

  • 2300 reflections

  • 176 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.09 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033843/pv2571sup1.cif

e-68-o2629-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033843/pv2571Isup2.hkl

e-68-o2629-Isup2.hkl (113.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033843/pv2571Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯N1 0.86 (2) 1.86 (2) 2.623 (3) 147 (2)

supplementary crystallographic information

Comment

Schiff bases represent a broad class of organic compounds that are reported to have a wide range of biological activities (Khan et al., 2009). The title compound was synthesized as a part of our ongoing research to study the biological activities of structurally diverse Schiff bases. The title compound (Fig. 1) is composed of a naphthyl (C1–C10) and a benzene rings (C12–C17) linked through an azomethine (C═N = 1.275 (2) Å) double bond which adopts an E configuration. The dihedral angle between the naphthyl and the benzene rings is 8.09 (10)° with maximum deviation of 0.013 (3) Å for C5 atom from the root mean square plane of the naphthyl ring. The bond lengths and angle in the title molecule are similar to the corresponding bond lengths and angles in a closely related Schiff base (Aslam et al. 2012). The molecular structure is stabilized by an intramolecular O1—H1C···N1 hydrogen bond to form S(6) graph set ring motif. In the crystal structure the molecules are arranged in a zig zag fashion to form sheets parallel to the c-axis (Fig.2).

Experimental

4-Chloroaniline (1 ml, 7.29 mmol) was dissolved in analytical grade methanol (10 ml) by continuous stirring followed by the addition of sSalicylaldehyde (0.76 ml, 0.7 mmol) and glacial acetic acid (0.5 ml). The reaction mixture was refluxed at 330–353 K on a hot plate for 2 h with continuous stirring. The progress of the reaction was monitored by TLC. On the completion of the reaction, the product was obtained as dark orange precipitates, which were filtered, washed with distilled water and dried to obtained 1.43 g (77% yield) title compound. The product was dissolved and slow evaporation of a methanol solution affording light yellow crystals suitable for single-crystal X-ray diffraction studies. All chemicals were purchased from Sigma-Aldrich.

Refinement

H atoms on carbon atoms were positioned geometrically with C—H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(C). The H atoms on the oxygen (O–H = 0.858 (10) Å) was located in difference Fourier maps and refined isotropically. Due to lack of sufficient anamolous effects, an absolute structure was not determined and the Friedle pairs (1082) were not merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the unit cell of the title compound showing molecular packing. H atoms were omitted for clarity.

Crystal data

C17H13NO F(000) = 520
Mr = 247.28 Dx = 1.292 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 1294 reflections
a = 13.6348 (17) Å θ = 2.6–27.8°
b = 5.8768 (7) Å µ = 0.08 mm1
c = 15.869 (2) Å T = 273 K
V = 1271.5 (3) Å3 Block, yellow
Z = 4 0.15 × 0.13 × 0.10 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2300 independent reflections
Radiation source: fine-focus sealed tube 1655 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
ω scan θmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −16→16
Tmin = 0.988, Tmax = 0.992 k = −7→6
6852 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0383P)2] where P = (Fo2 + 2Fc2)/3
2300 reflections (Δ/σ)max < 0.001
176 parameters Δρmax = 0.08 e Å3
2 restraints Δρmin = −0.09 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.51540 (13) 1.1177 (3) 0.40612 (13) 0.0846 (6)
N1 0.58509 (13) 0.7914 (3) 0.50171 (12) 0.0592 (5)
C1 0.73882 (15) 0.8452 (4) 0.56875 (14) 0.0542 (5)
H1B 0.7413 0.9851 0.5415 0.065*
C2 0.81650 (15) 0.7835 (4) 0.62265 (13) 0.0519 (5)
C3 0.89755 (15) 0.9265 (4) 0.63756 (14) 0.0626 (6)
H3A 0.9012 1.0662 0.6103 0.075*
C4 0.97028 (19) 0.8641 (4) 0.69100 (17) 0.0718 (7)
H4A 1.0229 0.9616 0.7001 0.086*
C5 0.96686 (19) 0.6547 (5) 0.73249 (15) 0.0707 (7)
H5A 1.0167 0.6140 0.7695 0.085*
C6 0.89085 (18) 0.5111 (4) 0.71880 (14) 0.0664 (7)
H6A 0.8901 0.3702 0.7455 0.080*
C7 0.81231 (16) 0.5715 (4) 0.66451 (13) 0.0552 (6)
C8 0.73097 (17) 0.4295 (4) 0.64880 (16) 0.0662 (7)
H8A 0.7274 0.2883 0.6750 0.079*
C9 0.65784 (16) 0.4950 (4) 0.59615 (17) 0.0694 (7)
H9A 0.6051 0.3977 0.5869 0.083*
C10 0.66026 (15) 0.7071 (3) 0.55524 (14) 0.0527 (5)
C11 0.50538 (16) 0.6824 (4) 0.49001 (14) 0.0591 (6)
H11A 0.4976 0.5400 0.5147 0.071*
C12 0.42625 (15) 0.7755 (4) 0.43905 (13) 0.0538 (6)
C13 0.33980 (16) 0.6545 (4) 0.43146 (16) 0.0676 (6)
H13A 0.3340 0.5137 0.4577 0.081*
C14 0.26177 (19) 0.7392 (5) 0.38553 (15) 0.0753 (7)
H14A 0.2040 0.6559 0.3808 0.090*
C15 0.27038 (18) 0.9489 (5) 0.34667 (16) 0.0738 (7)
H15A 0.2179 1.0067 0.3159 0.089*
C16 0.35529 (17) 1.0725 (5) 0.35294 (16) 0.0709 (7)
H16A 0.3606 1.2121 0.3257 0.085*
C17 0.43405 (15) 0.9890 (4) 0.40022 (15) 0.0596 (6)
H1C 0.5580 (15) 1.045 (4) 0.4354 (15) 0.085 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0667 (11) 0.0733 (12) 0.1138 (16) −0.0103 (10) −0.0150 (11) 0.0200 (12)
N1 0.0481 (10) 0.0643 (12) 0.0652 (12) 0.0001 (9) −0.0006 (9) 0.0003 (10)
C1 0.0549 (12) 0.0528 (13) 0.0549 (13) 0.0019 (10) 0.0028 (11) 0.0091 (11)
C2 0.0526 (12) 0.0541 (13) 0.0490 (13) 0.0030 (10) 0.0050 (10) 0.0028 (12)
C3 0.0625 (14) 0.0623 (15) 0.0628 (15) −0.0067 (12) −0.0046 (12) 0.0083 (13)
C4 0.0656 (16) 0.080 (2) 0.0693 (15) −0.0074 (13) −0.0103 (14) −0.0022 (15)
C5 0.0682 (16) 0.0849 (19) 0.0589 (14) 0.0102 (14) −0.0107 (12) 0.0035 (15)
C6 0.0729 (17) 0.0688 (15) 0.0576 (16) 0.0126 (14) 0.0048 (14) 0.0094 (13)
C7 0.0581 (13) 0.0592 (14) 0.0484 (13) 0.0059 (11) 0.0069 (11) 0.0063 (12)
C8 0.0656 (16) 0.0570 (14) 0.0759 (17) −0.0038 (12) 0.0015 (14) 0.0200 (13)
C9 0.0588 (14) 0.0648 (16) 0.0847 (17) −0.0092 (12) 0.0021 (14) 0.0113 (15)
C10 0.0483 (12) 0.0548 (14) 0.0551 (13) 0.0041 (10) 0.0036 (12) 0.0051 (12)
C11 0.0591 (14) 0.0567 (13) 0.0616 (15) 0.0047 (11) 0.0037 (12) −0.0055 (12)
C12 0.0506 (12) 0.0585 (14) 0.0523 (13) 0.0013 (11) 0.0029 (10) −0.0084 (12)
C13 0.0669 (14) 0.0712 (16) 0.0649 (15) −0.0051 (13) −0.0020 (13) −0.0112 (14)
C14 0.0649 (15) 0.095 (2) 0.0659 (17) −0.0086 (14) −0.0118 (13) −0.0116 (16)
C15 0.0617 (15) 0.096 (2) 0.0642 (16) 0.0132 (14) −0.0109 (13) −0.0180 (16)
C16 0.0726 (16) 0.0752 (18) 0.0649 (16) 0.0103 (14) −0.0071 (15) −0.0064 (14)
C17 0.0521 (13) 0.0641 (15) 0.0627 (15) 0.0007 (11) 0.0031 (12) −0.0067 (13)

Geometric parameters (Å, º)

O1—C17 1.346 (3) C7—C8 1.410 (3)
O1—H1C 0.86 (2) C8—C9 1.356 (3)
N1—C11 1.275 (2) C8—H8A 0.9300
N1—C10 1.421 (2) C9—C10 1.406 (3)
C1—C10 1.361 (3) C9—H9A 0.9300
C1—C2 1.409 (3) C11—C12 1.455 (3)
C1—H1B 0.9300 C11—H11A 0.9300
C2—C3 1.408 (3) C12—C13 1.382 (3)
C2—C7 1.413 (3) C12—C17 1.402 (3)
C3—C4 1.355 (3) C13—C14 1.382 (3)
C3—H3A 0.9300 C13—H13A 0.9300
C4—C5 1.396 (3) C14—C15 1.383 (3)
C4—H4A 0.9300 C14—H14A 0.9300
C5—C6 1.354 (3) C15—C16 1.370 (3)
C5—H5A 0.9300 C15—H15A 0.9300
C6—C7 1.419 (3) C16—C17 1.399 (3)
C6—H6A 0.9300 C16—H16A 0.9300
C17—O1—H1C 108.4 (18) C8—C9—H9A 119.4
C11—N1—C10 121.78 (19) C10—C9—H9A 119.4
C10—C1—C2 122.3 (2) C1—C10—C9 118.3 (2)
C10—C1—H1B 118.9 C1—C10—N1 116.99 (18)
C2—C1—H1B 118.9 C9—C10—N1 124.66 (19)
C3—C2—C1 122.6 (2) N1—C11—C12 121.6 (2)
C3—C2—C7 118.60 (19) N1—C11—H11A 119.2
C1—C2—C7 118.80 (19) C12—C11—H11A 119.2
C4—C3—C2 121.2 (2) C13—C12—C17 119.1 (2)
C4—C3—H3A 119.4 C13—C12—C11 119.2 (2)
C2—C3—H3A 119.4 C17—C12—C11 121.6 (2)
C3—C4—C5 120.6 (2) C12—C13—C14 121.2 (2)
C3—C4—H4A 119.7 C12—C13—H13A 119.4
C5—C4—H4A 119.7 C14—C13—H13A 119.4
C6—C5—C4 119.9 (2) C13—C14—C15 119.4 (2)
C6—C5—H5A 120.0 C13—C14—H14A 120.3
C4—C5—H5A 120.0 C15—C14—H14A 120.3
C5—C6—C7 121.3 (2) C16—C15—C14 120.8 (2)
C5—C6—H6A 119.4 C16—C15—H15A 119.6
C7—C6—H6A 119.4 C14—C15—H15A 119.6
C8—C7—C2 118.1 (2) C15—C16—C17 120.1 (3)
C8—C7—C6 123.5 (2) C15—C16—H16A 120.0
C2—C7—C6 118.4 (2) C17—C16—H16A 120.0
C9—C8—C7 121.3 (2) O1—C17—C16 118.2 (2)
C9—C8—H8A 119.4 O1—C17—C12 122.3 (2)
C7—C8—H8A 119.4 C16—C17—C12 119.4 (2)
C8—C9—C10 121.2 (2)
C10—C1—C2—C3 −179.4 (2) C8—C9—C10—C1 0.9 (3)
C10—C1—C2—C7 −0.4 (3) C8—C9—C10—N1 −177.6 (2)
C1—C2—C3—C4 178.8 (2) C11—N1—C10—C1 −174.8 (2)
C7—C2—C3—C4 −0.2 (3) C11—N1—C10—C9 3.8 (3)
C2—C3—C4—C5 0.3 (4) C10—N1—C11—C12 176.38 (18)
C3—C4—C5—C6 0.7 (4) N1—C11—C12—C13 −177.2 (2)
C4—C5—C6—C7 −1.8 (4) N1—C11—C12—C17 0.2 (3)
C3—C2—C7—C8 −179.76 (19) C17—C12—C13—C14 0.8 (3)
C1—C2—C7—C8 1.2 (3) C11—C12—C13—C14 178.27 (19)
C3—C2—C7—C6 −0.9 (3) C12—C13—C14—C15 −0.1 (3)
C1—C2—C7—C6 −179.89 (19) C13—C14—C15—C16 0.3 (4)
C5—C6—C7—C8 −179.3 (2) C14—C15—C16—C17 −1.1 (4)
C5—C6—C7—C2 1.9 (3) C15—C16—C17—O1 −178.7 (2)
C2—C7—C8—C9 −1.0 (3) C15—C16—C17—C12 1.7 (3)
C6—C7—C8—C9 −179.8 (2) C13—C12—C17—O1 178.9 (2)
C7—C8—C9—C10 −0.1 (4) C11—C12—C17—O1 1.5 (3)
C2—C1—C10—C9 −0.7 (3) C13—C12—C17—C16 −1.6 (3)
C2—C1—C10—N1 177.97 (18) C11—C12—C17—C16 −179.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1C···N1 0.86 (2) 1.86 (2) 2.623 (3) 147 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2571).

References

  1. Aslam, M., Anis, I., Afza, N., Hussain, M. T. & Yousuf, S. (2012). Acta Cryst. E68, o1447. [DOI] [PMC free article] [PubMed]
  2. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Khan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795–7801. [DOI] [PubMed]
  4. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033843/pv2571sup1.cif

e-68-o2629-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033843/pv2571Isup2.hkl

e-68-o2629-Isup2.hkl (113.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033843/pv2571Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES