Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 4;68(Pt 9):o2630. doi: 10.1107/S1600536812033818

2-Methyl-3-nitro-N-{(E)-[5-(4-nitro­phen­yl)furan-2-yl]methyl­idene}aniline

Merve Pekdemir a,*, Şamil Işık b, Sümeyye Gümüş c, Erbil Ağar c, Sema Öztürk Yıldırım d,e, Ray J Butcher e
PMCID: PMC3435658  PMID: 22969531

Abstract

In the title Schiff-base type compound, C18H13N3O5, the central furan ring makes dihedral angles of 12.80 (7) and 51.43 (4)° with the terminal benzene rings. The dihedral angle between the benzene rings is 45.43 (3)°. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to (010). In addition, there are π–π stacking inter­actions within the layer [centroid–centroid distance = 3.584 (1) Å] and between the layers [centroid–centroid distance 3.751 (1) Å].

Related literature  

For similar Schiff bases, see: Yamada et al. (2002); Cukurovali et al. (2002); Isloor et al. (2009); Abu Thaher et al. (2012). For the biological activity of Schiff bases, see: Vijesh et al. (2010); Tarafder et al. (2002); Ghorab et al. (2010); Ali et al. (2002). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-68-o2630-scheme1.jpg

Experimental  

Crystal data  

  • C18H13N3O5

  • M r = 351.31

  • Monoclinic, Inline graphic

  • a = 10.9026 (3) Å

  • b = 10.2798 (3) Å

  • c = 14.2962 (3) Å

  • β = 101.529 (2)°

  • V = 1569.94 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.93 mm−1

  • T = 123 K

  • 0.50 × 0.40 × 0.40 mm

Data collection  

  • Oxford Diffraction Gemini-R diffractometer

  • Absorption correction: multi-scan [CrysAlis RED (Oxford Diffraction, 2007), and Clark & Reid (1995)] T min = 0.671, T max = 0.688

  • 6460 measured reflections

  • 3171 independent reflections

  • 2764 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.118

  • S = 1.05

  • 3171 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033818/gk2492sup1.cif

e-68-o2630-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033818/gk2492Isup2.hkl

e-68-o2630-Isup2.hkl (155.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033818/gk2492Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O5i 0.93 2.58 3.4895 (19) 165
C13—H13A⋯O1ii 0.93 2.53 3.432 (2) 162
C14—H14A⋯O2iii 0.93 2.55 3.361 (2) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

supplementary crystallographic information

Comment

Schiff bases have been very important as ligands in the area of coordination chemistry. These ligands and their metal complexes have shown important activity in the field of biology in the past years. Several new examples have been tested for their antitumor, antimicrobial, anticancer and antibacterial activities (Ali et al., 2002; Ghorab et al., 2010; Tarafder et al., 2002; Vijesh et al., 2010). In view of these facts, the aim of this present study is to obtain a structure of the Schiff base, 2-methyl-3-nitro-N-{(E)-[5-(4-nitrophenyl)furan-2-yl]methylideneaniline.

In the title compound (Fig 1), the molecule presents an E configuration with the 2-(4-nitrophenyl)furan group opposite to 1-methyl-2-nitrobenzene group about the N2 ═C11 double bond. This N2 ═C11 double bond distance [1.2783 (19) Å] is longer than the N ═C typical bond distance (Allen et al., 1987), probably due to π conjugation along all the molecule. The torsion angle is 171.79 (14) ° formed by C10—C11—N2—C12. All other bond lengths and angles are within normal ranges (Allen et al., 1987). The central furan ring (C7—C10/O3) is planar, with an r.m.s. deviation for fitted atoms of 0.0019 Å. This plane makes dihedral angles of 12.80 (7) and 51.43 (4) ° with the terminal benzene rings C1—C6 and C12—C17, respectively. The dihedral angle between the two benzene ring is 45.43 (3)°.

In the crystal, C—H···O intermolecular interactions are observed (Table 1) as well as π–π stacking interactions [Cg1···Cg3 (-x,1 - y,-z) = 3.584 (1) Å and Cg3···Cg3 (x, 1 + y, z) = 3.751 (1) Å, where Cg1(O3/C7—C10) and Cg3(C12—C17) are the centroids of the furan and benzene ring, respectively] (Fig. 2).

Experimental

The title compound was prepared by refluxing a mixture containing 5-(4-nitrophenyl)furan-2 carbaldehyde (0.011 g 0.051 mmol) and 2-methyl-3-nitroaniline (0.0077 g 0.051 mmol) in 40 ml of ethanol. The reaction mixture was stirred for 1 h under reflux. The crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield 62%; m.p: 471–474 K).

Refinement

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93–0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms. The intramolecular interaction is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C18H13N3O5 F(000) = 728
Mr = 351.31 Dx = 1.486 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybc Cell parameters from 3039 reflections
a = 10.9026 (3) Å θ = 3.2–75.5°
b = 10.2798 (3) Å µ = 0.93 mm1
c = 14.2962 (3) Å T = 123 K
β = 101.529 (2)° Block, light yellow
V = 1569.94 (7) Å3 0.50 × 0.40 × 0.40 mm
Z = 4

Data collection

Oxford Diffraction Gemini-R diffractometer 3171 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2764 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 10.5081 pixels mm-1 θmax = 75.7°, θmin = 4.1°
ω scans h = −12→13
Absorption correction: multi-scan [CrysAlis RED (Oxford Diffraction, 2007), and Clark & Reid (1995)] k = −12→12
Tmin = 0.671, Tmax = 0.688 l = −17→7
6460 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.3233P] where P = (Fo2 + 2Fc2)/3
3171 reflections (Δ/σ)max < 0.001
236 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 −0.22774 (12) 0.22828 (14) −0.24867 (10) 0.0309 (3)
N2 0.28795 (11) 0.40005 (12) 0.30426 (9) 0.0224 (3)
N3 0.26983 (13) 0.41136 (13) 0.64618 (9) 0.0281 (3)
O1 −0.32515 (11) 0.21084 (14) −0.21964 (10) 0.0412 (3)
O2 −0.21821 (12) 0.20872 (15) −0.33171 (9) 0.0448 (3)
O3 0.20668 (9) 0.40126 (10) 0.10398 (7) 0.0206 (2)
O4 0.15778 (13) 0.43153 (18) 0.63095 (9) 0.0537 (4)
O5 0.33489 (12) 0.41218 (14) 0.72703 (8) 0.0403 (3)
C1 −0.11759 (13) 0.27566 (15) −0.18146 (10) 0.0247 (3)
C2 −0.01288 (15) 0.31134 (16) −0.21649 (11) 0.0280 (3)
H2A −0.0121 0.3041 −0.2812 0.034*
C3 0.09029 (14) 0.35784 (16) −0.15327 (10) 0.0258 (3)
H3A 0.1611 0.3832 −0.1756 0.031*
C4 0.08916 (13) 0.36719 (14) −0.05598 (10) 0.0209 (3)
C5 −0.01791 (13) 0.32932 (14) −0.02242 (10) 0.0224 (3)
H5A −0.0187 0.3345 0.0424 0.027*
C6 −0.12221 (13) 0.28430 (14) −0.08556 (11) 0.0242 (3)
H6A −0.1940 0.2603 −0.0641 0.029*
C7 0.20003 (13) 0.41645 (14) 0.00792 (10) 0.0204 (3)
C8 0.30432 (14) 0.47801 (15) −0.00873 (10) 0.0236 (3)
H8A 0.3217 0.4999 −0.0679 0.028*
C9 0.38082 (14) 0.50202 (15) 0.08172 (10) 0.0236 (3)
H9A 0.4585 0.5428 0.0936 0.028*
C10 0.31886 (13) 0.45401 (14) 0.14813 (10) 0.0215 (3)
C11 0.35804 (13) 0.44480 (14) 0.25000 (10) 0.0222 (3)
H11A 0.4382 0.4727 0.2778 0.027*
C12 0.34377 (13) 0.38033 (14) 0.40136 (10) 0.0216 (3)
C13 0.46195 (14) 0.32360 (15) 0.42596 (11) 0.0248 (3)
H13A 0.5056 0.3028 0.3783 0.030*
C14 0.51519 (14) 0.29778 (15) 0.52044 (11) 0.0270 (3)
H14A 0.5945 0.2608 0.5361 0.032*
C15 0.45026 (14) 0.32705 (15) 0.59109 (10) 0.0248 (3)
H15A 0.4849 0.3099 0.6548 0.030*
C16 0.33171 (13) 0.38282 (14) 0.56546 (10) 0.0221 (3)
C17 0.27330 (13) 0.41176 (14) 0.47145 (10) 0.0208 (3)
C18 0.14791 (14) 0.47584 (16) 0.43966 (11) 0.0267 (3)
H18A 0.1486 0.5596 0.4694 0.040*
H18B 0.0841 0.4227 0.4577 0.040*
H18C 0.1310 0.4861 0.3715 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0263 (7) 0.0291 (7) 0.0333 (7) 0.0015 (5) −0.0037 (5) −0.0025 (6)
N2 0.0224 (6) 0.0234 (6) 0.0213 (6) 0.0002 (5) 0.0040 (5) −0.0015 (5)
N3 0.0339 (7) 0.0280 (7) 0.0237 (6) −0.0029 (6) 0.0091 (5) 0.0007 (5)
O1 0.0234 (6) 0.0482 (8) 0.0492 (7) −0.0046 (5) 0.0003 (5) −0.0067 (6)
O2 0.0407 (7) 0.0580 (9) 0.0306 (6) −0.0050 (6) −0.0051 (5) −0.0087 (6)
O3 0.0211 (5) 0.0228 (5) 0.0177 (5) −0.0007 (4) 0.0034 (4) −0.0005 (4)
O4 0.0355 (7) 0.0957 (13) 0.0336 (7) 0.0182 (8) 0.0155 (5) 0.0061 (7)
O5 0.0425 (7) 0.0572 (8) 0.0218 (6) −0.0081 (6) 0.0076 (5) −0.0048 (5)
C1 0.0221 (7) 0.0231 (7) 0.0263 (7) 0.0025 (6) −0.0015 (6) −0.0012 (6)
C2 0.0282 (7) 0.0338 (8) 0.0212 (7) 0.0010 (6) 0.0031 (6) −0.0012 (6)
C3 0.0238 (7) 0.0314 (8) 0.0230 (7) 0.0001 (6) 0.0067 (5) 0.0022 (6)
C4 0.0213 (7) 0.0194 (7) 0.0215 (7) 0.0028 (5) 0.0031 (5) 0.0013 (5)
C5 0.0234 (7) 0.0221 (7) 0.0220 (7) 0.0029 (6) 0.0056 (5) 0.0008 (6)
C6 0.0209 (7) 0.0226 (7) 0.0295 (8) 0.0024 (6) 0.0061 (6) 0.0025 (6)
C7 0.0229 (7) 0.0206 (7) 0.0182 (7) 0.0043 (5) 0.0051 (5) 0.0020 (5)
C8 0.0234 (7) 0.0265 (7) 0.0218 (7) 0.0022 (6) 0.0064 (5) 0.0030 (6)
C9 0.0212 (7) 0.0245 (7) 0.0254 (7) −0.0009 (6) 0.0052 (5) 0.0004 (6)
C10 0.0190 (6) 0.0206 (7) 0.0247 (7) −0.0002 (5) 0.0043 (5) −0.0011 (6)
C11 0.0217 (7) 0.0208 (7) 0.0239 (7) −0.0005 (6) 0.0038 (5) −0.0022 (6)
C12 0.0229 (7) 0.0211 (7) 0.0205 (7) −0.0037 (6) 0.0037 (5) −0.0014 (5)
C13 0.0246 (7) 0.0262 (7) 0.0246 (7) 0.0001 (6) 0.0073 (6) −0.0020 (6)
C14 0.0226 (7) 0.0270 (8) 0.0299 (8) 0.0025 (6) 0.0016 (6) −0.0013 (6)
C15 0.0271 (7) 0.0234 (7) 0.0219 (7) −0.0036 (6) −0.0001 (5) 0.0000 (6)
C16 0.0254 (7) 0.0205 (7) 0.0215 (7) −0.0050 (6) 0.0069 (5) −0.0023 (5)
C17 0.0204 (7) 0.0189 (7) 0.0236 (7) −0.0033 (5) 0.0053 (5) −0.0012 (5)
C18 0.0237 (7) 0.0295 (8) 0.0270 (7) 0.0022 (6) 0.0056 (6) 0.0001 (6)

Geometric parameters (Å, º)

N1—O1 1.2282 (18) C7—C8 1.363 (2)
N1—O2 1.2288 (19) C8—C9 1.413 (2)
N1—C1 1.4633 (19) C8—H8A 0.9300
N2—C11 1.2783 (19) C9—C10 1.363 (2)
N2—C12 1.4145 (18) C9—H9A 0.9300
N3—O4 1.2151 (19) C10—C11 1.437 (2)
N3—O5 1.2294 (18) C11—H11A 0.9300
N3—C16 1.4779 (18) C12—C13 1.394 (2)
O3—C7 1.3696 (16) C12—C17 1.417 (2)
O3—C10 1.3711 (17) C13—C14 1.385 (2)
C1—C2 1.385 (2) C13—H13A 0.9300
C1—C6 1.385 (2) C14—C15 1.378 (2)
C2—C3 1.380 (2) C14—H14A 0.9300
C2—H2A 0.9300 C15—C16 1.394 (2)
C3—C4 1.397 (2) C15—H15A 0.9300
C3—H3A 0.9300 C16—C17 1.399 (2)
C4—C5 1.403 (2) C17—C18 1.504 (2)
C4—C7 1.453 (2) C18—H18A 0.9600
C5—C6 1.383 (2) C18—H18B 0.9600
C5—H5A 0.9300 C18—H18C 0.9600
C6—H6A 0.9300
O1—N1—O2 123.25 (14) C10—C9—H9A 126.6
O1—N1—C1 118.58 (14) C8—C9—H9A 126.6
O2—N1—C1 118.17 (14) C9—C10—O3 110.08 (12)
C11—N2—C12 117.06 (12) C9—C10—C11 129.92 (13)
O4—N3—O5 122.54 (14) O3—C10—C11 119.85 (12)
O4—N3—C16 119.57 (13) N2—C11—C10 123.11 (13)
O5—N3—C16 117.89 (13) N2—C11—H11A 118.4
C7—O3—C10 106.26 (11) C10—C11—H11A 118.4
C2—C1—C6 122.47 (14) C13—C12—N2 120.15 (13)
C2—C1—N1 118.59 (14) C13—C12—C17 121.44 (13)
C6—C1—N1 118.94 (14) N2—C12—C17 118.28 (13)
C3—C2—C1 118.55 (14) C14—C13—C12 120.82 (14)
C3—C2—H2A 120.7 C14—C13—H13A 119.6
C1—C2—H2A 120.7 C12—C13—H13A 119.6
C2—C3—C4 120.52 (14) C15—C14—C13 119.77 (14)
C2—C3—H3A 119.7 C15—C14—H14A 120.1
C4—C3—H3A 119.7 C13—C14—H14A 120.1
C3—C4—C5 119.67 (13) C14—C15—C16 118.84 (14)
C3—C4—C7 118.58 (13) C14—C15—H15A 120.6
C5—C4—C7 121.76 (13) C16—C15—H15A 120.6
C6—C5—C4 120.11 (13) C15—C16—C17 124.04 (14)
C6—C5—H5A 119.9 C15—C16—N3 114.85 (13)
C4—C5—H5A 119.9 C17—C16—N3 121.10 (13)
C5—C6—C1 118.68 (14) C16—C17—C12 115.08 (13)
C5—C6—H6A 120.7 C16—C17—C18 126.53 (13)
C1—C6—H6A 120.7 C12—C17—C18 118.35 (13)
C8—C7—O3 110.44 (13) C17—C18—H18A 109.5
C8—C7—C4 132.08 (13) C17—C18—H18B 109.5
O3—C7—C4 117.48 (12) H18A—C18—H18B 109.5
C7—C8—C9 106.36 (13) C17—C18—H18C 109.5
C7—C8—H8A 126.8 H18A—C18—H18C 109.5
C9—C8—H8A 126.8 H18B—C18—H18C 109.5
C10—C9—C8 106.86 (13)
O1—N1—C1—C2 −171.75 (15) C7—O3—C10—C9 0.44 (15)
O2—N1—C1—C2 7.8 (2) C7—O3—C10—C11 −175.51 (13)
O1—N1—C1—C6 7.7 (2) C12—N2—C11—C10 171.79 (14)
O2—N1—C1—C6 −172.80 (15) C9—C10—C11—N2 178.09 (15)
C6—C1—C2—C3 −0.3 (2) O3—C10—C11—N2 −6.9 (2)
N1—C1—C2—C3 179.05 (14) C11—N2—C12—C13 −43.4 (2)
C1—C2—C3—C4 0.7 (2) C11—N2—C12—C17 140.62 (14)
C2—C3—C4—C5 −0.2 (2) N2—C12—C13—C14 −176.78 (14)
C2—C3—C4—C7 179.87 (14) C17—C12—C13—C14 −0.9 (2)
C3—C4—C5—C6 −0.7 (2) C12—C13—C14—C15 0.7 (2)
C7—C4—C5—C6 179.25 (13) C13—C14—C15—C16 −0.2 (2)
C4—C5—C6—C1 1.0 (2) C14—C15—C16—C17 −0.1 (2)
C2—C1—C6—C5 −0.5 (2) C14—C15—C16—N3 −179.66 (13)
N1—C1—C6—C5 −179.91 (13) O4—N3—C16—C15 −163.26 (16)
C10—O3—C7—C8 −0.50 (15) O5—N3—C16—C15 15.9 (2)
C10—O3—C7—C4 179.55 (12) O4—N3—C16—C17 17.2 (2)
C3—C4—C7—C8 12.5 (2) O5—N3—C16—C17 −163.65 (14)
C5—C4—C7—C8 −167.42 (15) C15—C16—C17—C12 −0.1 (2)
C3—C4—C7—O3 −167.53 (13) N3—C16—C17—C12 179.45 (12)
C5—C4—C7—O3 12.5 (2) C15—C16—C17—C18 −177.78 (14)
O3—C7—C8—C9 0.36 (17) N3—C16—C17—C18 1.8 (2)
C4—C7—C8—C9 −179.70 (15) C13—C12—C17—C16 0.6 (2)
C7—C8—C9—C10 −0.08 (17) N2—C12—C17—C16 176.52 (12)
C8—C9—C10—O3 −0.23 (17) C13—C12—C17—C18 178.50 (14)
C8—C9—C10—C11 175.19 (15) N2—C12—C17—C18 −5.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C18—H18C···N2 0.96 2.30 2.8047 (19) 112
C3—H3A···O5i 0.93 2.58 3.4895 (19) 165
C13—H13A···O1ii 0.93 2.53 3.432 (2) 162
C14—H14A···O2iii 0.93 2.55 3.361 (2) 147

Symmetry codes: (i) x, y, z−1; (ii) x+1, −y+1/2, z+1/2; (iii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2492).

References

  1. Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012). Acta Cryst. E68, o633. [DOI] [PMC free article] [PubMed]
  2. Ali, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2002). J. Inorg. Biochem. 92, 141–148. [DOI] [PubMed]
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  4. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  5. Cukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171–176.
  6. Ghorab, M. M., Ragab, F. A., Alqasoumi, S. I., Alafeefy, A. M. & Aboulmagd, S. A. (2010). Eur. J. Med. Chem. 45, 171–178. [DOI] [PubMed]
  7. Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787. [DOI] [PubMed]
  8. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M. & Yamin, B. M. (2002). Polyhedron, 21, 2547–2554.
  11. Vijesh, A. M., Isloor, A. M., Prabhu, V., Ahmad, S. & Malladi, S. (2010). Eur. J. Med. Chem. 45, 5460–5464. [DOI] [PubMed]
  12. Yamada, A., Kakitani, T., Yamamoto, S. & Yamato, T. (2002). Chem. Phys. Lett. 366, 670–675.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033818/gk2492sup1.cif

e-68-o2630-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033818/gk2492Isup2.hkl

e-68-o2630-Isup2.hkl (155.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033818/gk2492Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES