Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 4;68(Pt 9):o2645. doi: 10.1107/S1600536812034277

3-Phenyl­coumarin

Maria J Matos a,*, Lourdes Santana a, Eugenio Uriarte a
PMCID: PMC3435673  PMID: 22969544

Abstract

In the title compound, C15H10O2, a 3-phenyl derivative of the coumarin (also known as 2H-chromen-2-one or 2H-1-benzopyran-2-one) scaffold, the Cp—Cp—Cc—Cc torsion angle between the coumarin (c) ring system and the phenyl (p) ring is −47.6 (2)°.

Related literature  

For the synthesis of the title compound, see: Matos, Santana et al.. et al. (2011); Matos, Terán et al.. et al. (2011). For examples of biological activity of coumarin derivatives, see: Borges et al. (2009); Matos et al. (2009, 2010); Matos, Santana et al.. et al. (2011); Matos, Terán et al.. et al. (2011); Viña, Matos, Ferino et al. (2012); Viña, Matos Yáñez et al. (2012).graphic file with name e-68-o2645-scheme1.jpg

Experimental  

Crystal data  

  • C15H10O2

  • M r = 222.23

  • Monoclinic, Inline graphic

  • a = 18.469 (4) Å

  • b = 5.9596 (12) Å

  • c = 19.274 (4) Å

  • β = 99.079 (3)°

  • V = 2094.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.27 × 0.22 × 0.09 mm

Data collection  

  • Bruker SMART CCD 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.876, T max = 1

  • 9021 measured reflections

  • 1924 independent reflections

  • 1492 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.104

  • S = 1.03

  • 1924 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812034277/zj2091sup1.cif

e-68-o2645-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034277/zj2091Isup2.hkl

e-68-o2645-Isup2.hkl (92.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812034277/zj2091Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by funds from the Xunta da Galicia (09CSA030203PR), the Ministerio de Sanidad y Consumo (PS09/00501) and the Fundação para a Ciência e Tecnologia (SFRH/BD/61262/2009).

supplementary crystallographic information

Comment

Coumarin derivatives are very interesting molecules due to the biological properties that they may display (Borges et al. 2009; Matos et al. 2009, 2010; Matos, Santana et al.., 2011; Matos, Terán et al.., 2011). The title structure is a 3-phenyl coumarin derivative that posses one aromatic ring linked at that position. Therefore, the X-ray analysis of this compound (figure 1) aims to contribute to the elucidation of structural requirements needed to understand the partial planarity of the compound (coumarin nucleus) and the torsion of the 3-phenyl ring. From the single-crystal diffraction measurements one can conclude that the experimental bond lengths are within normal values with the average the molecule bond lengths. The planarity of the coumarin moiety is also evident by the torsion angles values between their carbons. Also, the angle C5—C6—C7—C8 is from -47.6 (2)°, typical of the torsion permitted by the rotation of the 3-phenyl ring. Packing diagram of the structure allows the interpretation of the spatial orientation of the molecules (figure 2).

Experimental

3-Phenylcoumarin was prepared according to the protocol described by Matos, Santana et al.. et al. (2011) and Matos, Terán et al.. et al. (2011). Perkin reaction gave the desired coumarin derivative. A solution of 2-hydroxybenzaldehyde (0.9 g, 7.37 mmol) and the phenylacetic acid (1.25 g, 9.21 mmol) in dimethyl sulfoxide (15 ml) was prepared. Dicyclohexylcarbodiimide (DCC, 2.37 g, 11.50 mmol) was added, and the mixture was heated at 110 °C for 24 h. Ice (100 ml) and acetic acid (10 ml) were added to the reaction mixture. After keeping it at room temperature for 2 h, the mixture was extracted with ether (3 x 25 ml). The organic layer was extracted with sodium bicarbonate solution (50 ml, 5%) and then water (20 ml). The solvent was evaporated under vacuum, and the dry residue was purified by flash chromatography (hexane/ethyl acetate 9:1). A white solid was obtained in a yield of 67% (1.1 g). Suitable crystals for X-ray studies were grown from slow evaporation from acetone/ethanol: Mp. 131–132 °C; 1H NMR (300 MHz, CDCl3): δ 7.34–7.54 (5H, m, 6-H, 8-H, 9-H, 11-H, 13-H), 7.56–7.66 (2H, m, 10-H, 12-H), 7.72–7.80 (2H, m, 5-H, 7-H), 7.90 (1H, s, 4-H); 13C NMR (75.47 MHz, CDCl3): δ 116.5, 119.7, 124.5, 127.9, 128.4, 128.5, 128.5, 128.9, 131.4, 134.7, 139.9, 153.5, 160.6; DEPT: 116.5, 124.5, 127.9, 128.4, 128.5, 128.5, 131.4, 139.9; MS m/z 223 ([M + 1]+, 16), 222 (M+, 100). Anal. Calcd for C15H10O2: C, 81.07; H, 4.54. Found: C, 81.02; H, 4.52.

Refinement

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title structure viewed along the b axis.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C15H10O2 F(000) = 928
Mr = 222.23 F(000) = 928
Monoclinic, C2/c Dx = 1.409 Mg m3
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.7107 Å
a = 18.469 (4) Å Cell parameters from 1813 reflections
b = 5.9596 (12) Å θ = 2.8–26.2°
c = 19.274 (4) Å µ = 0.09 mm1
β = 99.079 (3)° T = 100 K
V = 2094.9 (7) Å3 Prism, colourless
Z = 8 0.27 × 0.22 × 0.09 mm

Data collection

Bruker SMART CCD 1000 diffractometer 1924 independent reflections
Radiation source: fine-focus sealed tube 1492 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
ω scans θmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −22→21
Tmin = 0.876, Tmax = 1 k = 0→7
9021 measured reflections l = 0→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0528P)2 + 1.3579P] where P = (Fo2 + 2Fc2)/3
1924 reflections (Δ/σ)max = 0.001
154 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.21370 (8) 0.2410 (3) 0.36971 (8) 0.0168 (4)
H1 0.219 0.3712 0.3985 0.02*
C2 0.15672 (9) 0.2280 (3) 0.31395 (8) 0.0184 (4)
H2 0.1223 0.3472 0.3054 0.022*
C3 0.14979 (9) 0.0409 (3) 0.27041 (8) 0.0192 (4)
H3 0.1115 0.0337 0.2313 0.023*
C4 0.19876 (9) −0.1348 (3) 0.28427 (8) 0.0188 (4)
H4 0.1939 −0.263 0.2546 0.023*
C5 0.25492 (9) −0.1254 (3) 0.34124 (8) 0.0166 (4)
H5 0.2876 −0.2485 0.3511 0.02*
C6 0.26348 (8) 0.0646 (3) 0.38409 (8) 0.0145 (4)
C7 0.32522 (8) 0.0774 (3) 0.44333 (8) 0.0146 (3)
C8 0.34288 (8) −0.0903 (3) 0.49004 (8) 0.0145 (3)
H8 0.3139 −0.2228 0.4858 0.017*
C9 0.40398 (8) −0.0744 (3) 0.54588 (8) 0.0145 (4)
C10 0.42315 (8) −0.2408 (3) 0.59681 (8) 0.0168 (4)
H10 0.3949 −0.3744 0.5955 0.02*
C11 0.48286 (9) −0.2116 (3) 0.64877 (8) 0.0201 (4)
H11 0.4954 −0.3246 0.6834 0.024*
C12 0.52497 (9) −0.0168 (3) 0.65072 (8) 0.0206 (4)
H12 0.5664 0.001 0.6863 0.025*
C13 0.50708 (9) 0.1506 (3) 0.60137 (8) 0.0190 (4)
H13 0.5357 0.2835 0.6026 0.023*
C14 0.44646 (8) 0.1196 (3) 0.55016 (8) 0.0152 (4)
C15 0.37106 (8) 0.2799 (3) 0.44882 (8) 0.0161 (4)
O1 0.42953 (6) 0.29055 (18) 0.50224 (5) 0.0177 (3)
O2 0.36238 (6) 0.43926 (18) 0.40948 (6) 0.0220 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0191 (8) 0.0165 (8) 0.0160 (8) 0.0006 (7) 0.0062 (7) −0.0010 (7)
C2 0.0167 (8) 0.0186 (9) 0.0206 (8) 0.0025 (7) 0.0050 (7) 0.0052 (7)
C3 0.0166 (8) 0.0250 (9) 0.0156 (8) −0.0040 (7) 0.0013 (6) 0.0034 (7)
C4 0.0215 (9) 0.0188 (9) 0.0167 (8) −0.0050 (7) 0.0051 (7) −0.0029 (7)
C5 0.0188 (8) 0.0134 (8) 0.0182 (8) 0.0012 (7) 0.0050 (7) 0.0020 (6)
C6 0.0144 (8) 0.0156 (8) 0.0144 (8) −0.0023 (6) 0.0054 (6) 0.0004 (6)
C7 0.0149 (8) 0.0147 (8) 0.0152 (8) 0.0012 (6) 0.0055 (6) −0.0020 (6)
C8 0.0154 (8) 0.0132 (8) 0.0160 (8) 0.0001 (6) 0.0058 (6) −0.0028 (6)
C9 0.0138 (8) 0.0167 (8) 0.0140 (8) 0.0030 (6) 0.0056 (6) −0.0019 (6)
C10 0.0174 (8) 0.0166 (8) 0.0177 (8) 0.0012 (7) 0.0066 (7) 0.0003 (7)
C11 0.0216 (9) 0.0225 (9) 0.0163 (8) 0.0063 (7) 0.0037 (7) 0.0017 (7)
C12 0.0158 (8) 0.0283 (10) 0.0171 (8) 0.0035 (7) 0.0010 (6) −0.0041 (7)
C13 0.0174 (8) 0.0201 (9) 0.0199 (9) −0.0013 (7) 0.0046 (7) −0.0057 (7)
C14 0.0168 (8) 0.0162 (8) 0.0136 (8) 0.0038 (7) 0.0057 (6) −0.0005 (6)
C15 0.0154 (8) 0.0161 (8) 0.0171 (8) 0.0020 (7) 0.0038 (6) −0.0025 (7)
O1 0.0202 (6) 0.0138 (6) 0.0185 (6) −0.0026 (5) 0.0011 (5) 0.0000 (5)
O2 0.0239 (6) 0.0148 (6) 0.0265 (6) −0.0003 (5) 0.0017 (5) 0.0053 (5)

Geometric parameters (Å, º)

C1—C2 1.382 (2) C8—H8 0.95
C1—C6 1.395 (2) C9—C14 1.392 (2)
C1—H1 0.95 C9—C10 1.401 (2)
C2—C3 1.390 (2) C10—C11 1.379 (2)
C2—H2 0.95 C10—H10 0.95
C3—C4 1.382 (2) C11—C12 1.395 (2)
C3—H3 0.95 C11—H11 0.95
C4—C5 1.387 (2) C12—C13 1.382 (2)
C4—H4 0.95 C12—H12 0.95
C5—C6 1.396 (2) C13—C14 1.383 (2)
C5—H5 0.95 C13—H13 0.95
C6—C7 1.483 (2) C14—O1 1.3776 (18)
C7—C8 1.350 (2) C15—O2 1.2102 (19)
C7—C15 1.468 (2) C15—O1 1.3709 (19)
C8—C9 1.434 (2)
C2—C1—C6 120.61 (15) C9—C8—H8 119
C2—C1—H1 119.7 C14—C9—C10 117.94 (14)
C6—C1—H1 119.7 C14—C9—C8 117.93 (14)
C1—C2—C3 120.03 (15) C10—C9—C8 124.13 (15)
C1—C2—H2 120 C11—C10—C9 120.29 (15)
C3—C2—H2 120 C11—C10—H10 119.9
C4—C3—C2 119.76 (15) C9—C10—H10 119.9
C4—C3—H3 120.1 C10—C11—C12 120.22 (15)
C2—C3—H3 120.1 C10—C11—H11 119.9
C3—C4—C5 120.48 (15) C12—C11—H11 119.9
C3—C4—H4 119.8 C13—C12—C11 120.71 (15)
C5—C4—H4 119.8 C13—C12—H12 119.6
C4—C5—C6 120.11 (15) C11—C12—H12 119.6
C4—C5—H5 119.9 C12—C13—C14 118.25 (15)
C6—C5—H5 119.9 C12—C13—H13 120.9
C1—C6—C5 118.96 (14) C14—C13—H13 120.9
C1—C6—C7 121.09 (14) O1—C14—C13 116.88 (14)
C5—C6—C7 119.94 (14) O1—C14—C9 120.55 (14)
C8—C7—C15 118.97 (14) C13—C14—C9 122.57 (14)
C8—C7—C6 123.41 (14) O2—C15—O1 116.41 (14)
C15—C7—C6 117.56 (14) O2—C15—C7 125.59 (15)
C7—C8—C9 122.02 (15) O1—C15—C7 117.99 (14)
C7—C8—H8 119 C15—O1—C14 122.53 (12)
C6—C1—C2—C3 −1.8 (2) C9—C10—C11—C12 −0.5 (2)
C1—C2—C3—C4 1.9 (2) C10—C11—C12—C13 0.8 (2)
C2—C3—C4—C5 −0.2 (2) C11—C12—C13—C14 0.0 (2)
C3—C4—C5—C6 −1.6 (2) C12—C13—C14—O1 179.25 (13)
C2—C1—C6—C5 0.0 (2) C12—C13—C14—C9 −1.2 (2)
C2—C1—C6—C7 179.41 (14) C10—C9—C14—O1 −178.93 (13)
C4—C5—C6—C1 1.6 (2) C8—C9—C14—O1 0.4 (2)
C4—C5—C6—C7 −177.73 (14) C10—C9—C14—C13 1.5 (2)
C1—C6—C7—C8 133.05 (16) C8—C9—C14—C13 −179.15 (13)
C5—C6—C7—C8 −47.6 (2) C8—C7—C15—O2 178.09 (15)
C1—C6—C7—C15 −49.86 (19) C6—C7—C15—O2 0.9 (2)
C5—C6—C7—C15 129.50 (15) C8—C7—C15—O1 −0.9 (2)
C15—C7—C8—C9 1.5 (2) C6—C7—C15—O1 −178.17 (12)
C6—C7—C8—C9 178.59 (14) O2—C15—O1—C14 −179.01 (13)
C7—C8—C9—C14 −1.3 (2) C7—C15—O1—C14 0.1 (2)
C7—C8—C9—C10 178.02 (14) C13—C14—O1—C15 179.72 (13)
C14—C9—C10—C11 −0.6 (2) C9—C14—O1—C15 0.1 (2)
C8—C9—C10—C11 −179.96 (14)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2091).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Borges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23–85.
  3. Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Matos, M. J., Santana, L., Uriarte, E., Delogu, G., Corda, M., Fadda, M. B., Era, B. & Fais, A. (2011). Bioorg. Med. Chem. Lett. 21, 3342–3345. [DOI] [PubMed]
  7. Matos, M. J., Terán, C., Pérez-Castillo, Y., Uriarte, E., Santana, L. & Viña, D. (2011). J. Med. Chem. 54, 7127–7137. [DOI] [PubMed]
  8. Matos, M. J., Viña, D., Janeiro, P., Borges, F., Santana, L. & Uriarte, E. (2010). Bioorg. Med. Chem. Lett. 20, 5157–5160. [DOI] [PubMed]
  9. Matos, M. J., Viña, D., Quezada, E., Picciau, C., Delogu, G., Orallo, F., Santana, L. & Uriarte, E. (2009). Bioorg. Med. Chem. Lett. 19, 3268–3270. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Viña, D., Matos, M. J., Ferino, G., Cadoni, E., Laguna, R., Borges, F., Uriarte, E. & Santana, L. (2012). Chem. Med. Chem. 7, 464–470. [DOI] [PubMed]
  12. Viña, D., Matos, M. J., Yáñez, M., Santana, L. & Uriarte, E. (2012). Med. Chem. Commun. 3, 213–218.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812034277/zj2091sup1.cif

e-68-o2645-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034277/zj2091Isup2.hkl

e-68-o2645-Isup2.hkl (92.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812034277/zj2091Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES