Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 4;68(Pt 9):o2650. doi: 10.1107/S1600536812033995

N,N-Dimethyl-N′,N′′-bis­(2-methyl­phenyl)phospho­ric triamide mono­hydrate

Farnaz Eslami a, Mehrdad Pourayoubi b,*, Mohammad Yousefi a, Arnold L Rheingold c, James A Golen c
PMCID: PMC3435677  PMID: 22969548

Abstract

In the title compound, C16H22N3OP·H2O, the P atom adopts a distorted tetra­hedral environment with the bond angles around the P atom in the range 99.98 (7)–116.20 (7)°. The P—N bond length in the [(CH3)2N]P(O) fragment [1.6392 (14) Å] is slightly shorter than two other P—N bonds [1.6439 (15) and 1.6530 (14) Å]. In the (CH3)2NP(O) fragment, one of the methyl groups is syn to the P=O bond, whereas the other one is anti to the P=O bond [C—N—P=O torsion angles = 4.80 (17) and −174.57 (15)°]. In the crystal, the water mol­ecules form hydrogen bonds to the O atoms of the P=O bond of two different mol­ecules and act as acceptors for the two amino H atoms of the same mol­ecule. As a result, chains parallel to [010] are formed.

Related literature  

For phospho­ramidates having a [(CH3)2N]P(O) fragment and for P=O and P—N bond lengths, see: Pourayoubi, Tarahhomi et al. (2012); Pourayoubi et al. (2011). For the double H-atom acceptor capability of the P=O group, see: Pourayoubi, Nečas & Negari (2012).graphic file with name e-68-o2650-scheme1.jpg

Experimental  

Crystal data  

  • C16H22N3OP·H2O

  • M r = 321.35

  • Monoclinic, Inline graphic

  • a = 10.7058 (16) Å

  • b = 7.2541 (11) Å

  • c = 22.091 (3) Å

  • β = 90.971 (2)°

  • V = 1715.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100 K

  • 0.20 × 0.14 × 0.14 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.967, T max = 0.977

  • 15201 measured reflections

  • 4036 independent reflections

  • 3135 reflections with I > 2σ(I)

  • R int = 0.050

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.115

  • S = 1.04

  • 4036 reflections

  • 215 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033995/bt5974sup1.cif

e-68-o2650-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033995/bt5974Isup2.hkl

e-68-o2650-Isup2.hkl (197.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O1i 0.84 (1) 1.91 (2) 2.7491 (17) 173 (2)
O1W—H1W⋯O1ii 0.85 (1) 1.91 (1) 2.7607 (17) 175 (2)
N1—H1N⋯O1W 0.87 (1) 2.04 (2) 2.8724 (19) 159 (2)
N2—H2N⋯O1W 0.87 (1) 2.00 (2) 2.8473 (18) 164 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Support of this investigation by Shahr-e Rey Branch, Islamic Azad University, is gratefully acknowledged.

supplementary crystallographic information

Comment

The crystal structure determination of the title hydrate phosphoric triamide (Fig. 1) was performed as a part of work on synthesis and X-ray crystallography of compounds with a [(CH3)2N]P(O) fragment (Pourayoubi, Tarahhomi et al., 2012; Pourayoubi et al., 2011).

In the phosphoric triamide molecule, the P atom adopts a distorted (N)P(O)(N)2 tetrahedral environment. The P═O and P—N bond lengths are within the expected values (Pourayoubi, Tarahhomi et al., 2012; Pourayoubi et al., 2011). The sum of three bond angles at the nitrogen atom of the dimethylamido fragment, C11—N3—C10 + C11—N3—P1 + C10—N3—P1, of 360° suggests sp2 hybridization for this N atom. Moreover, the C6—N1—P1 and C4—N2—P1 bond angles are 125.07 (12)° and 125.66 (12)°, respectively. The P—N bond length of the [(CH3)2N]P(O) fragment is shorter than two other P—N bonds.

In the crystal, the oxygen atoms of phosphoryl group and water molecule act as double-hydrogen bond acceptors (for a definition of double-hydrogen bond acceptor, see: Pourayoubi, Nečas & Negari, 2012) to form O—H···O···H—O and N—H···O···H—N groups. The phosphoric triamide and water molecules are aggregated through these hydrogen bonds in a linear arrangement parallel to the b axis, Fig. 2.

Experimental

Synthesis of ((CH3)2N)P(O)Cl2: [(CH3)2NH2]Cl (0.184 mol) and P(O)Cl3 (0.552 mol) were refluxed for 8 h and afterwards the excess of P(O)Cl3 was removed in vacuo.

Synthesis of title compound: To a solution of ((CH3)2N)P(O)Cl2 (3.7 mmol) in CHCl3 (15 ml), a solution of ortho-toluidine (14.8 mmol) in the same solvent (25 ml) was added at 273 K. After 4 h stirring, the solvent was removed and product was washed with deionized water and recrystallized from chloroform/n-hexene at room temperature to yield colourless crystals.

Refinement

The H1N, H2N, H1W and H2W atoms were found from a Fourier difference map and their coordinates were refined with the following restraints: N—H = 0.87 (2) Å, O—H = 0.85 (2) Å and H1W···H2W = 1.33 (2) Å. Their displacement parameters were set to 1.2 Ueq of the parent atom. All other hydrogen atoms were placed in calculated positions and allowed to ride on their parent C atoms; C—H distances (CH3) 0.98 Å, (CH) 0.95 Å with Ueq of 1.5 and 1.2, respectively.

Figures

Fig. 1.

Fig. 1.

An ORTEP-style plot and atom labeling scheme for the title hydrate compound. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Packing in the title compound with hydrogen bonds shown as dotted lines. Only H atoms involved in hydrogen bonds are shown.

Crystal data

C16H22N3OP·H2O F(000) = 688
Mr = 321.35 Dx = 1.244 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4384 reflections
a = 10.7058 (16) Å θ = 3.0–28.1°
b = 7.2541 (11) Å µ = 0.17 mm1
c = 22.091 (3) Å T = 100 K
β = 90.971 (2)° Block, colourless
V = 1715.3 (4) Å3 0.20 × 0.14 × 0.14 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4036 independent reflections
Radiation source: fine-focus sealed tube 3135 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.050
φ and ω scans θmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −14→13
Tmin = 0.967, Tmax = 0.977 k = −9→9
15201 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.3428P] where P = (Fo2 + 2Fc2)/3
4036 reflections (Δ/σ)max < 0.001
215 parameters Δρmax = 0.30 e Å3
5 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.30253 (4) 0.63760 (6) 0.045212 (19) 0.02129 (13)
O1W 0.43897 (12) 0.18044 (16) 0.04084 (6) 0.0283 (3)
H1W 0.5043 (15) 0.175 (3) 0.0196 (8) 0.034*
H2W 0.4105 (16) 0.072 (2) 0.0412 (8) 0.034*
N1 0.31522 (13) 0.49375 (19) −0.01239 (6) 0.0235 (3)
H1N 0.3457 (17) 0.385 (2) −0.0046 (8) 0.028*
O1 0.35590 (11) 0.82247 (16) 0.03322 (5) 0.0273 (3)
N3 0.15544 (13) 0.6646 (2) 0.06265 (7) 0.0273 (3)
C1 0.39835 (17) 0.6608 (3) 0.28289 (8) 0.0336 (4)
H1 0.4026 0.6910 0.3247 0.040*
C2 0.35064 (16) 0.7858 (3) 0.24143 (8) 0.0314 (4)
H2 0.3230 0.9034 0.2545 0.038*
C3 0.34322 (16) 0.7391 (2) 0.18036 (8) 0.0281 (4)
H3 0.3109 0.8255 0.1518 0.034*
C4 0.38270 (15) 0.5666 (2) 0.16075 (7) 0.0233 (3)
N2 0.37225 (13) 0.5161 (2) 0.09875 (6) 0.0243 (3)
H2N 0.4025 (17) 0.411 (2) 0.0871 (8) 0.029*
C6 0.26974 (15) 0.5277 (2) −0.07211 (7) 0.0232 (3)
C7 0.27217 (15) 0.3843 (2) −0.11509 (8) 0.0259 (4)
C8 0.22525 (16) 0.4208 (3) −0.17281 (8) 0.0312 (4)
H8 0.2260 0.3251 −0.2022 0.037*
C9 0.17722 (16) 0.5919 (3) −0.18920 (8) 0.0327 (4)
H9 0.1445 0.6125 −0.2289 0.039*
C10 0.08215 (18) 0.5071 (3) 0.08193 (10) 0.0458 (5)
H10A 0.0604 0.5220 0.1246 0.069*
H10B 0.1311 0.3941 0.0771 0.069*
H10C 0.0055 0.4992 0.0572 0.069*
C11 0.09013 (19) 0.8401 (3) 0.06091 (9) 0.0403 (5)
H11A 0.0206 0.8333 0.0316 0.060*
H11B 0.1480 0.9376 0.0488 0.060*
H11C 0.0578 0.8679 0.1011 0.060*
C12 0.22373 (16) 0.7000 (2) −0.08851 (8) 0.0266 (4)
H12 0.2236 0.7970 −0.0596 0.032*
C13 0.17799 (16) 0.7313 (3) −0.14671 (8) 0.0309 (4)
H13 0.1469 0.8498 −0.1574 0.037*
C14 0.32410 (18) 0.1973 (3) −0.09952 (8) 0.0336 (4)
H14A 0.3166 0.1163 −0.1349 0.050*
H14B 0.2773 0.1445 −0.0660 0.050*
H14C 0.4123 0.2091 −0.0876 0.050*
C15 0.43306 (15) 0.4396 (2) 0.20245 (8) 0.0257 (4)
C16 0.47558 (18) 0.2518 (3) 0.18325 (8) 0.0330 (4)
H16A 0.5079 0.1843 0.2186 0.050*
H16B 0.5417 0.2642 0.1534 0.050*
H16C 0.4049 0.1843 0.1652 0.050*
C17 0.43986 (16) 0.4911 (3) 0.26294 (8) 0.0322 (4)
H17 0.4742 0.4069 0.2916 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0220 (2) 0.0178 (2) 0.0242 (2) −0.00113 (16) 0.00295 (16) −0.00023 (16)
O1W 0.0330 (7) 0.0177 (6) 0.0344 (7) −0.0005 (5) 0.0081 (5) −0.0033 (5)
N1 0.0295 (8) 0.0169 (7) 0.0240 (7) 0.0007 (6) 0.0004 (6) 0.0001 (6)
O1 0.0294 (6) 0.0196 (6) 0.0330 (6) −0.0041 (5) 0.0035 (5) −0.0014 (5)
N3 0.0232 (7) 0.0259 (8) 0.0331 (8) 0.0014 (6) 0.0046 (6) 0.0030 (6)
C1 0.0321 (10) 0.0433 (11) 0.0252 (9) −0.0036 (8) −0.0006 (7) −0.0073 (8)
C2 0.0260 (9) 0.0334 (10) 0.0347 (10) −0.0008 (8) 0.0012 (7) −0.0109 (8)
C3 0.0281 (9) 0.0268 (9) 0.0293 (9) 0.0019 (7) −0.0020 (7) −0.0030 (7)
C4 0.0206 (8) 0.0248 (9) 0.0244 (8) −0.0026 (7) 0.0011 (6) −0.0020 (7)
N2 0.0283 (7) 0.0203 (7) 0.0244 (7) 0.0022 (6) 0.0012 (6) −0.0042 (6)
C6 0.0209 (8) 0.0245 (9) 0.0242 (8) −0.0050 (6) 0.0022 (6) 0.0004 (7)
C7 0.0227 (8) 0.0264 (9) 0.0287 (9) −0.0049 (7) 0.0037 (7) −0.0035 (7)
C8 0.0286 (9) 0.0384 (11) 0.0267 (9) −0.0056 (8) 0.0025 (7) −0.0057 (8)
C9 0.0270 (9) 0.0453 (12) 0.0258 (9) −0.0048 (8) −0.0017 (7) 0.0039 (8)
C10 0.0289 (10) 0.0475 (13) 0.0613 (14) −0.0055 (9) 0.0109 (9) 0.0170 (11)
C11 0.0372 (11) 0.0417 (12) 0.0422 (11) 0.0157 (9) 0.0084 (9) 0.0062 (9)
C12 0.0268 (9) 0.0239 (9) 0.0293 (9) −0.0037 (7) −0.0001 (7) −0.0001 (7)
C13 0.0278 (9) 0.0299 (10) 0.0350 (10) −0.0041 (7) −0.0007 (7) 0.0078 (8)
C14 0.0374 (10) 0.0297 (10) 0.0338 (10) 0.0008 (8) −0.0007 (8) −0.0085 (8)
C15 0.0202 (8) 0.0267 (9) 0.0302 (9) −0.0030 (7) 0.0002 (7) −0.0004 (7)
C16 0.0391 (10) 0.0288 (10) 0.0310 (9) 0.0033 (8) −0.0018 (8) 0.0042 (7)
C17 0.0295 (9) 0.0391 (11) 0.0278 (9) −0.0023 (8) −0.0035 (7) 0.0006 (8)

Geometric parameters (Å, º)

P1—O1 1.4833 (12) C7—C14 1.504 (2)
P1—N3 1.6392 (14) C8—C9 1.389 (3)
P1—N2 1.6439 (15) C8—H8 0.9500
P1—N1 1.6530 (14) C9—C13 1.380 (3)
O1W—H1W 0.850 (14) C9—H9 0.9500
O1W—H2W 0.841 (14) C10—H10A 0.9800
N1—C6 1.420 (2) C10—H10B 0.9800
N1—H1N 0.871 (14) C10—H10C 0.9800
N3—C11 1.453 (2) C11—H11A 0.9800
N3—C10 1.454 (2) C11—H11B 0.9800
C1—C2 1.381 (3) C11—H11C 0.9800
C1—C17 1.383 (3) C12—C13 1.387 (2)
C1—H1 0.9500 C12—H12 0.9500
C2—C3 1.392 (2) C13—H13 0.9500
C2—H2 0.9500 C14—H14A 0.9800
C3—C4 1.392 (2) C14—H14B 0.9800
C3—H3 0.9500 C14—H14C 0.9800
C4—C15 1.404 (2) C15—C17 1.388 (2)
C4—N2 1.420 (2) C15—C16 1.500 (2)
N2—H2N 0.869 (14) C16—H16A 0.9800
C6—C12 1.389 (2) C16—H16B 0.9800
C6—C7 1.409 (2) C16—H16C 0.9800
C7—C8 1.388 (2) C17—H17 0.9500
O1—P1—N3 107.97 (7) C13—C9—H9 120.7
O1—P1—N2 116.20 (7) C8—C9—H9 120.7
N3—P1—N2 108.73 (7) N3—C10—H10A 109.5
O1—P1—N1 113.35 (7) N3—C10—H10B 109.5
N3—P1—N1 110.37 (7) H10A—C10—H10B 109.5
N2—P1—N1 99.98 (7) N3—C10—H10C 109.5
H1W—O1W—H2W 105.3 (15) H10A—C10—H10C 109.5
C6—N1—P1 125.07 (12) H10B—C10—H10C 109.5
C6—N1—H1N 117.5 (12) N3—C11—H11A 109.5
P1—N1—H1N 117.1 (12) N3—C11—H11B 109.5
C11—N3—C10 115.75 (15) H11A—C11—H11B 109.5
C11—N3—P1 124.21 (12) N3—C11—H11C 109.5
C10—N3—P1 120.03 (12) H11A—C11—H11C 109.5
C2—C1—C17 119.38 (17) H11B—C11—H11C 109.5
C2—C1—H1 120.3 C13—C12—C6 120.50 (17)
C17—C1—H1 120.3 C13—C12—H12 119.8
C1—C2—C3 119.80 (17) C6—C12—H12 119.8
C1—C2—H2 120.1 C9—C13—C12 120.55 (18)
C3—C2—H2 120.1 C9—C13—H13 119.7
C4—C3—C2 120.53 (17) C12—C13—H13 119.7
C4—C3—H3 119.7 C7—C14—H14A 109.5
C2—C3—H3 119.7 C7—C14—H14B 109.5
C3—C4—C15 120.06 (15) H14A—C14—H14B 109.5
C3—C4—N2 120.83 (15) C7—C14—H14C 109.5
C15—C4—N2 119.11 (15) H14A—C14—H14C 109.5
C4—N2—P1 125.66 (12) H14B—C14—H14C 109.5
C4—N2—H2N 119.2 (12) C17—C15—C4 117.90 (16)
P1—N2—H2N 115.1 (12) C17—C15—C16 120.38 (16)
C12—C6—C7 119.93 (15) C4—C15—C16 121.70 (15)
C12—C6—N1 120.84 (15) C15—C16—H16A 109.5
C7—C6—N1 119.23 (15) C15—C16—H16B 109.5
C8—C7—C6 117.91 (17) H16A—C16—H16B 109.5
C8—C7—C14 120.57 (16) C15—C16—H16C 109.5
C6—C7—C14 121.52 (15) H16A—C16—H16C 109.5
C7—C8—C9 122.43 (17) H16B—C16—H16C 109.5
C7—C8—H8 118.8 C1—C17—C15 122.30 (18)
C9—C8—H8 118.8 C1—C17—H17 118.8
C13—C9—C8 118.67 (17) C15—C17—H17 118.8
O1—P1—N1—C6 −55.73 (15) P1—N1—C6—C7 −171.82 (12)
N3—P1—N1—C6 65.52 (15) C12—C6—C7—C8 −1.3 (2)
N2—P1—N1—C6 179.92 (13) N1—C6—C7—C8 178.99 (14)
O1—P1—N3—C11 4.80 (17) C12—C6—C7—C14 178.50 (16)
N2—P1—N3—C11 131.68 (15) N1—C6—C7—C14 −1.2 (2)
N1—P1—N3—C11 −119.60 (15) C6—C7—C8—C9 0.3 (2)
O1—P1—N3—C10 −174.57 (15) C14—C7—C8—C9 −179.55 (16)
N2—P1—N3—C10 −47.69 (17) C7—C8—C9—C13 1.0 (3)
N1—P1—N3—C10 61.04 (16) C7—C6—C12—C13 1.1 (2)
C17—C1—C2—C3 0.9 (3) N1—C6—C12—C13 −179.17 (15)
C1—C2—C3—C4 0.5 (3) C8—C9—C13—C12 −1.2 (3)
C2—C3—C4—C15 −1.4 (2) C6—C12—C13—C9 0.1 (3)
C2—C3—C4—N2 178.28 (15) C3—C4—C15—C17 1.0 (2)
C3—C4—N2—P1 −6.6 (2) N2—C4—C15—C17 −178.72 (14)
C15—C4—N2—P1 173.12 (12) C3—C4—C15—C16 179.43 (16)
O1—P1—N2—C4 61.98 (15) N2—C4—C15—C16 −0.2 (2)
N3—P1—N2—C4 −60.03 (15) C2—C1—C17—C15 −1.3 (3)
N1—P1—N2—C4 −175.68 (13) C4—C15—C17—C1 0.4 (3)
P1—N1—C6—C12 8.5 (2) C16—C15—C17—C1 −178.08 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H2W···O1i 0.84 (1) 1.91 (2) 2.7491 (17) 173 (2)
O1W—H1W···O1ii 0.85 (1) 1.91 (1) 2.7607 (17) 175 (2)
N1—H1N···O1W 0.87 (1) 2.04 (2) 2.8724 (19) 159 (2)
N2—H2N···O1W 0.87 (1) 2.00 (2) 2.8473 (18) 164 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5974).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bruker (2007). APEX2 and SAINT Bruker Axs Inc., Madison, Wisconsin, USA.
  3. Bruker (2008). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  5. Pourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, o51–o56. [DOI] [PubMed]
  6. Pourayoubi, M., Tarahhomi, A., Karimi Ahmadabad, F., Fejfarová, K., Lee, A. van der & Dušek, M. (2012). Acta Cryst. C68, o164–o169. [DOI] [PubMed]
  7. Pourayoubi, M., Yousefi, M., Eslami, F., Rheingold, A. L. & Chen, C. (2011). Acta Cryst. E67, o3220. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033995/bt5974sup1.cif

e-68-o2650-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033995/bt5974Isup2.hkl

e-68-o2650-Isup2.hkl (197.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES