Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 8;68(Pt 9):o2653. doi: 10.1107/S1600536812034186

(3,6-Dimeth­oxy­naphthalen-2-yl)(naphthalen-2-yl)methanone

Takehiro Tsumuki a, Shun Murohashi a, Atsushi Nagasawa a, Akiko Okamoto a,*, Noriyuki Yonezawa a
PMCID: PMC3435680  PMID: 22969551

Abstract

In the title compound, C23H18O3, the dihedral angle between the two naphthalene ring systems is 78.02 (3)°. The bridging carbonyl C—C(=O)—C plane makes a dihedral angle of 70.56 (5)° with the naphthalene ring system in the 2,7-dimeth­oxy­naphthalene moiety and a dihedral angle of 11.53 (5)° with the naphthalene ring system in the naphthoyl group. In the crystal, adjacent mol­ecules are linked via C—H⋯π inter­actions, forming chains along [010].

Related literature  

For electrophilic aromatic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Kato et al. (2010, 2011); Nakaema et al. (2008); Tsumuki et al. (2011, 2012); Watanabe et al. (2010).graphic file with name e-68-o2653-scheme1.jpg

Experimental  

Crystal data  

  • C23H18O3

  • M r = 342.37

  • Monoclinic, Inline graphic

  • a = 13.4683 (9) Å

  • b = 8.9062 (5) Å

  • c = 14.7110 (8) Å

  • β = 105.646 (2)°

  • V = 1699.23 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 K

  • 0.60 × 0.30 × 0.20 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.941, T max = 0.983

  • 26536 measured reflections

  • 3863 independent reflections

  • 3436 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.109

  • S = 1.06

  • 3863 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812034186/su2487sup1.cif

e-68-o2653-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034186/su2487Isup2.hkl

e-68-o2653-Isup2.hkl (185.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812034186/su2487Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22ACg4i 0.98 2.80 3.5470 (12) 133

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant.

supplementary crystallographic information

Comment

In the course of our studies on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively with the aid of suitable acidic mediator (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). We have reported the structures of 1,8-dibenzoylnaphthalene analogues such as 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008). The benzoyl groups at the 1,8-positions of the naphthalene rings in these compounds are bonded in a nearly perpendicular manner and orient in opposite directions. The 1-monobenzoylnaphthalene analogues, such as (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato et al., 2010), were also revealed to have essentially the same non-coplanar structure as observed for 1,8-dibenzoylated naphthalene analogues. The corresponding β-isomers of 3-monobenzoylated naphthalene analogues such as (3,6-dimethoxynaphthalen-2-yl)(phenyl)methanone (Kato, et al., 2011) and (4-fluorophenyl)(3,6-dimethoxy-2-naphthyl)methanone (Watanabe et al., 2010). In the 3-monobenzoylated naphthalene analogues, which are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, the aroyl groups are connected to the naphthalene rings in a moderately twisted fashion.

Recently, a series of the corresponding naphthoylated naphthalene homologues to the benzoylated naphthalenes have been reported, such as [2,7-dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone (Tsumuki et al., 2011) and 1-(2-naphthoyl)-2,7-dimethoxynaphthalene (Tsumuki et al., 2012). As a part of our ongoing studies on the synthesis and structure of these homologous molecules, the crystal structure analysis of the title compound, a 2,7-dimethoxynaphthalene substituted at the 3-position by a 2-naphthoyl group, is reported on herein.

The molecular structure of the title molecule is illustrated in Fig. 1. The interplanar angle between the two naphthalene rings (C1—C10 and C12—C21) is 78.02 (3)°. The dihedral angle between the bridging carbonyl plane (O1—C3—C11—C12) and the naphthalene ring of the 2,7-demethoxynaphthalene moiety (C1—C10) is larger than that between the bridging carbonyl plane (O1—C3—C11—C12) and naphthalene ring of the naphthoyl group (C12—C21) [70.56 (5)° versus. 11.53 (5)°; torsion angle C2—C3—C11—O1 = -110.65 (13)° versus. torsion angle O1—C11—C12—C13 = -167.08 (11)°]

In the crystal, neighbouring molecules are linked by C—H···π interactions along the b axis (Table 1 and Fig. 2).

Experimental

The title compound was prepared by treatment of a mixture of 2,7-dimethoxynaphthalene (188 mg, 1 mmol) and 2-naphthoic acid (189 mg, 1.1 mmol) with phosphorus pentoxide—methanesulfonic acid mixture (P2O5—MsOH [1/10 w/w] 2.2 ml). After the reaction mixture had been stirred at 333 K for 6 h, the mixture was poured into ice-cold water and extracted with CHCl3 (3 × 10 ml). The combined extracts were washed with 2 M aqueous NaOH (3 × 15 ml) followed by washing with brine ( 3 × 15 ml). The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 349 mg, quant.). The crude product was purified by flush silica gel chromatography (eluent: toluene; isolated yield 28%). Colourless platelet single crystals suitable for X-ray diffraction were obtained by crystallization from chloroform. Spectroscopic data for the title compound are given in the archived CIF.

Refinement

All the H atoms could be located in a difference Fourier map. In the final cycles of refinement they were included in calculated positions and treated as riding atoms: C—H = 0.95 (aromatic) and 0.98 (methyl) Å, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial view along the a axis of the crystal packing of the title compound, showing the C—H···π interaction as dashed lines (see Table for details).

Crystal data

C23H18O3 F(000) = 720
Mr = 342.37 Dx = 1.338 Mg m3
Monoclinic, P21/c Melting point = 444.0–445.0 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71075 Å
a = 13.4683 (9) Å Cell parameters from 20190 reflections
b = 8.9062 (5) Å θ = 3.1–27.4°
c = 14.7110 (8) Å µ = 0.09 mm1
β = 105.646 (2)° T = 193 K
V = 1699.23 (17) Å3 Block, colourless
Z = 4 0.60 × 0.30 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 3863 independent reflections
Radiation source: rotating anode 3436 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
Detector resolution: 10.00 pixels mm-1 θmax = 27.5°, θmin = 3.1°
ω scans h = −17→17
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −11→11
Tmin = 0.941, Tmax = 0.983 l = −19→18
26536 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.3821P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3863 reflections Δρmax = 0.31 e Å3
238 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0154 (19)

Special details

Experimental. Spectroscopic data for the title compound: 1H NMR δ (300 MHz, CDCl3): 3.83 (3H, s), 3.96 (3H, s), 7.07 (1H, dd, J = 2.4, 9.0 Hz), 7.14 (1H, d, J = 2.4 Hz), 7.18 (1H, s), 7.51 (1H, dt, J = 1.2, 7.5 Hz), 7.60 (1H, dt, J = 1.2, 7.5 Hz), 7.71 (1H, d, J = 9.0 Hz), 7.84–7.92 (4H, m), 8.02 (1H, dd, J = 1.2, 9.0 Hz), 8.26 (1H,d, J = 1.2 Hz) p.p.m. 13C NMR δ (125 MHz, CDCl3): 195.97, 159.32, 155.89, 137.11, 135.55, 135.46, 132.39, 132.19, 130.03, 130.01, 129.59, 128.35, 128.05, 128.02, 127.73, 126.52, 125.17, 123.17, 117.02, 105.43, 105.04, 55.56, 55.32 p.p.m. IR (KBr, cm-1): 1666, 1630, 1459, 1226, 1191 HRMS (m/z): [M+H]+ calcd. for C23H19O3, 343.1334, found, 343.1344.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.31909 (7) 0.44270 (11) 0.02517 (6) 0.0449 (2)
O2 0.21312 (6) 0.25562 (9) 0.18816 (5) 0.03164 (19)
O3 0.66735 (6) 0.30077 (10) 0.59573 (6) 0.0396 (2)
C1 0.35816 (8) 0.26610 (11) 0.32895 (7) 0.0256 (2)
H1 0.3284 0.1931 0.3606 0.031*
C2 0.30615 (7) 0.31204 (11) 0.23965 (7) 0.0248 (2)
C3 0.34880 (8) 0.42318 (11) 0.19167 (7) 0.0252 (2)
C4 0.44353 (8) 0.48307 (12) 0.23457 (7) 0.0282 (2)
H4 0.4720 0.5567 0.2022 0.034*
C5 0.50006 (8) 0.43750 (11) 0.32631 (7) 0.0270 (2)
C6 0.59859 (9) 0.49671 (14) 0.37265 (8) 0.0363 (3)
H6 0.6283 0.5713 0.3420 0.044*
C7 0.65131 (9) 0.44839 (15) 0.46046 (9) 0.0390 (3)
H7 0.7175 0.4886 0.4900 0.047*
C8 0.60763 (8) 0.33873 (13) 0.50744 (7) 0.0311 (2)
C9 0.51225 (8) 0.27940 (12) 0.46576 (7) 0.0278 (2)
H9 0.4834 0.2062 0.4981 0.033*
C10 0.45652 (7) 0.32767 (11) 0.37402 (7) 0.0244 (2)
C11 0.28960 (8) 0.47414 (12) 0.09415 (7) 0.0279 (2)
C12 0.19693 (8) 0.56988 (11) 0.08637 (7) 0.0263 (2)
C13 0.17608 (7) 0.62890 (11) 0.16571 (6) 0.0236 (2)
H13 0.2198 0.6049 0.2262 0.028*
C14 0.09043 (7) 0.72487 (11) 0.15864 (7) 0.0233 (2)
C15 0.06908 (8) 0.78952 (11) 0.23953 (7) 0.0260 (2)
H15 0.1131 0.7686 0.3004 0.031*
C16 −0.01430 (8) 0.88170 (12) 0.23057 (7) 0.0300 (2)
H16 −0.0272 0.9255 0.2851 0.036*
C17 −0.08113 (9) 0.91196 (14) 0.14072 (8) 0.0358 (3)
H17 −0.1393 0.9751 0.1352 0.043*
C18 −0.06276 (9) 0.85107 (15) 0.06142 (8) 0.0408 (3)
H18 −0.1086 0.8719 0.0013 0.049*
C19 0.02400 (9) 0.75705 (13) 0.06789 (7) 0.0318 (2)
C20 0.04710 (10) 0.69372 (16) −0.01265 (8) 0.0444 (3)
H20 0.0031 0.7144 −0.0736 0.053*
C21 0.13096 (10) 0.60409 (15) −0.00430 (7) 0.0390 (3)
H21 0.1455 0.5642 −0.0592 0.047*
C22 0.17610 (8) 0.12457 (12) 0.22435 (8) 0.0334 (2)
H22A 0.1108 0.0929 0.1808 0.040*
H22B 0.1652 0.1471 0.2861 0.040*
H22C 0.2269 0.0437 0.2310 0.040*
C23 0.62408 (10) 0.19186 (14) 0.64517 (9) 0.0407 (3)
H23A 0.6707 0.1764 0.7083 0.049*
H23B 0.6147 0.0968 0.6103 0.049*
H23C 0.5572 0.2276 0.6508 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0548 (5) 0.0553 (5) 0.0303 (4) 0.0209 (4) 0.0210 (4) 0.0045 (4)
O2 0.0279 (4) 0.0306 (4) 0.0328 (4) −0.0027 (3) 0.0019 (3) 0.0078 (3)
O3 0.0329 (4) 0.0456 (5) 0.0342 (4) −0.0046 (4) −0.0015 (3) 0.0070 (4)
C1 0.0263 (5) 0.0232 (4) 0.0286 (5) 0.0005 (4) 0.0095 (4) 0.0039 (4)
C2 0.0232 (5) 0.0233 (5) 0.0286 (5) 0.0027 (4) 0.0082 (4) 0.0008 (4)
C3 0.0278 (5) 0.0241 (5) 0.0262 (5) 0.0057 (4) 0.0114 (4) 0.0029 (4)
C4 0.0308 (5) 0.0265 (5) 0.0310 (5) 0.0010 (4) 0.0146 (4) 0.0051 (4)
C5 0.0264 (5) 0.0268 (5) 0.0302 (5) 0.0006 (4) 0.0117 (4) 0.0014 (4)
C6 0.0312 (5) 0.0400 (6) 0.0391 (6) −0.0085 (5) 0.0120 (5) 0.0065 (5)
C7 0.0279 (5) 0.0464 (7) 0.0404 (6) −0.0097 (5) 0.0051 (5) 0.0026 (5)
C8 0.0284 (5) 0.0337 (5) 0.0297 (5) 0.0013 (4) 0.0054 (4) 0.0017 (4)
C9 0.0282 (5) 0.0264 (5) 0.0289 (5) 0.0010 (4) 0.0082 (4) 0.0033 (4)
C10 0.0246 (5) 0.0226 (4) 0.0273 (5) 0.0029 (4) 0.0093 (4) 0.0007 (4)
C11 0.0337 (5) 0.0268 (5) 0.0256 (5) 0.0034 (4) 0.0121 (4) 0.0025 (4)
C12 0.0311 (5) 0.0266 (5) 0.0222 (5) 0.0033 (4) 0.0086 (4) 0.0031 (4)
C13 0.0263 (5) 0.0241 (5) 0.0199 (4) −0.0001 (4) 0.0053 (3) 0.0024 (3)
C14 0.0260 (5) 0.0235 (4) 0.0203 (4) −0.0009 (4) 0.0061 (4) 0.0013 (3)
C15 0.0300 (5) 0.0269 (5) 0.0215 (4) 0.0002 (4) 0.0075 (4) 0.0010 (4)
C16 0.0343 (5) 0.0304 (5) 0.0280 (5) 0.0021 (4) 0.0131 (4) −0.0007 (4)
C17 0.0318 (5) 0.0402 (6) 0.0354 (6) 0.0113 (5) 0.0091 (4) 0.0022 (5)
C18 0.0384 (6) 0.0526 (7) 0.0273 (5) 0.0175 (5) 0.0019 (4) 0.0023 (5)
C19 0.0339 (6) 0.0377 (6) 0.0221 (5) 0.0085 (4) 0.0045 (4) 0.0017 (4)
C20 0.0511 (7) 0.0594 (8) 0.0182 (5) 0.0231 (6) 0.0018 (5) 0.0016 (5)
C21 0.0497 (7) 0.0483 (7) 0.0191 (5) 0.0172 (6) 0.0092 (5) 0.0007 (4)
C22 0.0270 (5) 0.0302 (5) 0.0404 (6) −0.0029 (4) 0.0049 (4) 0.0066 (4)
C23 0.0456 (7) 0.0363 (6) 0.0335 (6) −0.0015 (5) −0.0009 (5) 0.0082 (5)

Geometric parameters (Å, º)

O1—C11 1.2179 (13) C12—C21 1.4221 (14)
O2—C2 1.3726 (12) C13—C14 1.4168 (14)
O2—C22 1.4274 (13) C13—H13 0.9500
O3—C8 1.3729 (13) C14—C15 1.4195 (13)
O3—C23 1.4276 (15) C14—C19 1.4215 (14)
C1—C2 1.3739 (14) C15—C16 1.3684 (14)
C1—C10 1.4219 (14) C15—H15 0.9500
C1—H1 0.9500 C16—C17 1.4101 (15)
C2—C3 1.4235 (14) C16—H16 0.9500
C3—C4 1.3698 (15) C17—C18 1.3683 (16)
C3—C11 1.5109 (14) C17—H17 0.9500
C4—C5 1.4183 (15) C18—C19 1.4198 (15)
C4—H4 0.9500 C18—H18 0.9500
C5—C10 1.4195 (14) C19—C20 1.4204 (15)
C5—C6 1.4198 (15) C20—C21 1.3613 (17)
C6—C7 1.3651 (17) C20—H20 0.9500
C6—H6 0.9500 C21—H21 0.9500
C7—C8 1.4131 (16) C22—H22A 0.9800
C7—H7 0.9500 C22—H22B 0.9800
C8—C9 1.3713 (15) C22—H22C 0.9800
C9—C10 1.4223 (14) C23—H23A 0.9800
C9—H9 0.9500 C23—H23B 0.9800
C11—C12 1.4903 (14) C23—H23C 0.9800
C12—C13 1.3762 (13)
C2—O2—C22 116.88 (8) C12—C13—H13 119.5
C8—O3—C23 115.71 (9) C14—C13—H13 119.5
C2—C1—C10 120.12 (9) C13—C14—C15 121.89 (9)
C2—C1—H1 119.9 C13—C14—C19 118.97 (9)
C10—C1—H1 119.9 C15—C14—C19 119.15 (9)
O2—C2—C1 124.94 (9) C16—C15—C14 120.61 (9)
O2—C2—C3 114.29 (9) C16—C15—H15 119.7
C1—C2—C3 120.75 (9) C14—C15—H15 119.7
C4—C3—C2 119.51 (9) C15—C16—C17 120.32 (10)
C4—C3—C11 120.52 (9) C15—C16—H16 119.8
C2—C3—C11 119.97 (9) C17—C16—H16 119.8
C3—C4—C5 121.41 (9) C18—C17—C16 120.46 (10)
C3—C4—H4 119.3 C18—C17—H17 119.8
C5—C4—H4 119.3 C16—C17—H17 119.8
C4—C5—C10 118.71 (9) C17—C18—C19 120.75 (10)
C4—C5—C6 122.88 (10) C17—C18—H18 119.6
C10—C5—C6 118.41 (9) C19—C18—H18 119.6
C7—C6—C5 121.17 (10) C18—C19—C20 122.66 (10)
C7—C6—H6 119.4 C18—C19—C14 118.69 (10)
C5—C6—H6 119.4 C20—C19—C14 118.65 (10)
C6—C7—C8 120.11 (10) C21—C20—C19 121.38 (10)
C6—C7—H7 119.9 C21—C20—H20 119.3
C8—C7—H7 119.9 C19—C20—H20 119.3
C9—C8—O3 124.56 (10) C20—C21—C12 120.23 (10)
C9—C8—C7 120.73 (10) C20—C21—H21 119.9
O3—C8—C7 114.70 (10) C12—C21—H21 119.9
C8—C9—C10 119.91 (9) O2—C22—H22A 109.5
C8—C9—H9 120.0 O2—C22—H22B 109.5
C10—C9—H9 120.0 H22A—C22—H22B 109.5
C5—C10—C1 119.49 (9) O2—C22—H22C 109.5
C5—C10—C9 119.65 (9) H22A—C22—H22C 109.5
C1—C10—C9 120.85 (9) H22B—C22—H22C 109.5
O1—C11—C12 121.47 (9) O3—C23—H23A 109.5
O1—C11—C3 121.00 (10) O3—C23—H23B 109.5
C12—C11—C3 117.47 (8) H23A—C23—H23B 109.5
C13—C12—C21 119.66 (9) O3—C23—H23C 109.5
C13—C12—C11 120.77 (9) H23A—C23—H23C 109.5
C21—C12—C11 119.54 (9) H23B—C23—H23C 109.5
C12—C13—C14 121.10 (9)
C22—O2—C2—C1 −10.08 (15) C4—C3—C11—O1 69.33 (15)
C22—O2—C2—C3 168.17 (9) C2—C3—C11—O1 −110.65 (12)
C10—C1—C2—O2 177.09 (9) C4—C3—C11—C12 −107.91 (11)
C10—C1—C2—C3 −1.05 (15) C2—C3—C11—C12 72.11 (12)
O2—C2—C3—C4 −177.28 (9) O1—C11—C12—C13 −167.09 (11)
C1—C2—C3—C4 1.06 (15) C3—C11—C12—C13 10.14 (15)
O2—C2—C3—C11 2.70 (13) O1—C11—C12—C21 11.11 (17)
C1—C2—C3—C11 −178.96 (9) C3—C11—C12—C21 −171.67 (10)
C2—C3—C4—C5 −0.43 (15) C21—C12—C13—C14 −0.74 (16)
C11—C3—C4—C5 179.59 (9) C11—C12—C13—C14 177.45 (9)
C3—C4—C5—C10 −0.18 (15) C12—C13—C14—C15 −178.53 (9)
C3—C4—C5—C6 179.70 (10) C12—C13—C14—C19 1.56 (15)
C4—C5—C6—C7 −179.03 (11) C13—C14—C15—C16 −179.92 (9)
C10—C5—C6—C7 0.85 (18) C19—C14—C15—C16 −0.01 (15)
C5—C6—C7—C8 −0.7 (2) C14—C15—C16—C17 0.94 (16)
C23—O3—C8—C9 −0.16 (16) C15—C16—C17—C18 −0.79 (18)
C23—O3—C8—C7 179.06 (11) C16—C17—C18—C19 −0.3 (2)
C6—C7—C8—C9 0.08 (19) C17—C18—C19—C20 −178.80 (13)
C6—C7—C8—O3 −179.18 (11) C17—C18—C19—C14 1.23 (19)
O3—C8—C9—C10 179.53 (10) C13—C14—C19—C18 178.85 (10)
C7—C8—C9—C10 0.36 (17) C15—C14—C19—C18 −1.07 (16)
C4—C5—C10—C1 0.18 (14) C13—C14—C19—C20 −1.11 (16)
C6—C5—C10—C1 −179.70 (10) C15—C14—C19—C20 178.97 (11)
C4—C5—C10—C9 179.48 (9) C18—C19—C20—C21 179.91 (14)
C6—C5—C10—C9 −0.40 (15) C14—C19—C20—C21 −0.1 (2)
C2—C1—C10—C5 0.43 (15) C19—C20—C21—C12 1.0 (2)
C2—C1—C10—C9 −178.86 (9) C13—C12—C21—C20 −0.54 (19)
C8—C9—C10—C5 −0.18 (15) C11—C12—C21—C20 −178.75 (12)
C8—C9—C10—C1 179.10 (9)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C14–C19 ring.

D—H···A D—H H···A D···A D—H···A
C22—H22A···Cg4i 0.98 2.80 3.5470 (12) 133

Symmetry code: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2487).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659. [DOI] [PMC free article] [PubMed]
  5. Kato, Y., Takeuchi, R., Muto, T., Okamoto, A. & Yonezawa, N. (2011). Acta Cryst. E67, o668. [DOI] [PMC free article] [PubMed]
  6. Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [DOI] [PMC free article] [PubMed]
  7. Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.
  8. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
  9. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095. [DOI] [PMC free article] [PubMed]
  12. Tsumuki, T., Isogai, A., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2595. [DOI] [PMC free article] [PubMed]
  13. Watanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812034186/su2487sup1.cif

e-68-o2653-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034186/su2487Isup2.hkl

e-68-o2653-Isup2.hkl (185.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812034186/su2487Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES