Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 8;68(Pt 9):o2657. doi: 10.1107/S1600536812034423

N-(2-Bromo­phen­yl)-2-(naphthalen-1-yl)acetamide

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Prakash S Nayak b, B Narayana b, B K Sarojini c
PMCID: PMC3435683  PMID: 22969554

Abstract

In the title compound, C18H14BrNO, the naphthalene ring system [maximum deviation = 0.015 (3) Å] forms a dihedral angle of 67.70 (10)° with the benzene ring. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into C(4) chains propagating in [100]. A C—H⋯O inter­action reinforces the chain connectivity, generating an R 2 1(6) loop.

Related literature  

For general background to and related structures of the title compound, see: Fun et al. (2010, 2011a ,b , 2012). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o2657-scheme1.jpg

Experimental  

Crystal data  

  • C18H14BrNO

  • M r = 340.21

  • Orthorhombic, Inline graphic

  • a = 4.7603 (1) Å

  • b = 11.4614 (3) Å

  • c = 26.6255 (6) Å

  • V = 1452.68 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 100 K

  • 0.32 × 0.16 × 0.13 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.463, T max = 0.719

  • 16642 measured reflections

  • 3864 independent reflections

  • 3516 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.061

  • S = 1.03

  • 3864 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983), 1587 Friedel pairs

  • Flack parameter: 0.001 (8)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812034423/hb6923sup1.cif

e-68-o2657-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034423/hb6923Isup2.hkl

e-68-o2657-Isup2.hkl (189.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812034423/hb6923Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.86 (3) 2.03 (3) 2.855 (3) 163 (2)
C11—H11A⋯O1i 0.99 2.55 3.279 (3) 130

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). BN also thanks UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP-DRS-Phase 1 programme.

supplementary crystallographic information

Comment

In continuation of our work on synthesis of amides (Fun et al., 2010, 2011a, 2011b, 2012), we report herein the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. Bond lengths are comparable to related structures (Fun et al., 2010, 2011a, 2011b, 2012). The naphthalene ring system (C1-C10, maximum deviation of 0.015 (3) Å at atom C9) forms a dihedral angle of 67.70 (10)° with the benzene ring (C13-C18).

In the crystal structure, Fig. 2, molecules are linked via N1–H1N1···O1 and C11–H11A···O1 hydrogen bonds (Table 1) into one-dimensional [100] chains which contain R21 (6) ring motifs (Bernstein et al., 1995).

Experimental

1-Naphthaleneacetic acid (0.186 g, 1 mmol), 2-bromoaniline (0.1 ml, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring. The concotion was then extracted thrice with dichloromethane. The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound. Colourless blocks were grown from toluene solution by the slow evaporation method (m.p.: 421K).

Refinement

Atom H1N1 was located in a difference Fourier map and refined freely [N–H = 0.86 (3) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 0.99 Å and Uiso(H) = 1.2 Ueq(C). The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 40% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C18H14BrNO F(000) = 688
Mr = 340.21 Dx = 1.556 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 8019 reflections
a = 4.7603 (1) Å θ = 2.3–30.8°
b = 11.4614 (3) Å µ = 2.83 mm1
c = 26.6255 (6) Å T = 100 K
V = 1452.68 (6) Å3 Block, colourless
Z = 4 0.32 × 0.16 × 0.13 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3864 independent reflections
Radiation source: fine-focus sealed tube 3516 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
φ and ω scans θmax = 29.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −6→6
Tmin = 0.463, Tmax = 0.719 k = −15→15
16642 measured reflections l = −36→36

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0272P)2 + 0.2223P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3864 reflections Δρmax = 0.63 e Å3
195 parameters Δρmin = −0.33 e Å3
0 restraints Absolute structure: Flack (1983), 1587 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.001 (8)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.44680 (5) 0.197949 (18) 0.766005 (8) 0.01881 (6)
O1 1.1551 (4) 0.32404 (15) 0.64580 (7) 0.0288 (4)
N1 0.7212 (5) 0.25292 (18) 0.66352 (8) 0.0205 (4)
C1 0.9798 (6) 0.4924 (2) 0.54712 (8) 0.0243 (5)
C2 0.8336 (6) 0.3968 (2) 0.52540 (10) 0.0290 (6)
H2A 0.7122 0.3512 0.5458 0.035*
C3 0.8643 (7) 0.3692 (3) 0.47576 (10) 0.0362 (7)
H3A 0.7616 0.3060 0.4618 0.043*
C4 1.0465 (8) 0.4340 (3) 0.44572 (10) 0.0404 (7)
H4A 1.0702 0.4133 0.4114 0.048*
C5 1.1896 (7) 0.5257 (3) 0.46455 (10) 0.0342 (7)
H5A 1.3099 0.5691 0.4431 0.041*
C6 1.1646 (6) 0.5586 (2) 0.51556 (9) 0.0254 (5)
C7 1.3132 (7) 0.6544 (2) 0.53578 (11) 0.0327 (6)
H7A 1.4370 0.6981 0.5151 0.039*
C8 1.2791 (6) 0.6844 (2) 0.58521 (10) 0.0318 (6)
H8A 1.3788 0.7488 0.5989 0.038*
C9 1.0935 (6) 0.6184 (2) 0.61591 (9) 0.0274 (6)
H9A 1.0688 0.6408 0.6500 0.033*
C10 0.9508 (6) 0.52492 (19) 0.59833 (8) 0.0237 (5)
C11 0.7656 (6) 0.45304 (19) 0.63269 (9) 0.0238 (5)
H11A 0.5846 0.4374 0.6156 0.029*
H11B 0.7254 0.4984 0.6635 0.029*
C12 0.9006 (6) 0.3379 (2) 0.64713 (8) 0.0211 (6)
C13 0.8129 (5) 0.14552 (19) 0.68404 (8) 0.0169 (5)
C14 0.7098 (5) 0.10589 (17) 0.73006 (8) 0.0159 (4)
C15 0.7974 (5) 0.00074 (19) 0.75029 (8) 0.0202 (5)
H15A 0.7212 −0.0260 0.7812 0.024*
C16 0.9963 (5) −0.06519 (18) 0.72528 (8) 0.0244 (6)
H16A 1.0604 −0.1365 0.7394 0.029*
C17 1.1024 (5) −0.0273 (2) 0.67953 (9) 0.0240 (6)
H17A 1.2386 −0.0729 0.6623 0.029*
C18 1.0100 (5) 0.07691 (19) 0.65886 (8) 0.0207 (5)
H18A 1.0815 0.1018 0.6273 0.025*
H1N1 0.543 (6) 0.261 (2) 0.6612 (8) 0.015 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01624 (11) 0.01879 (9) 0.02138 (9) 0.00023 (10) 0.00331 (10) 0.00085 (8)
O1 0.0139 (9) 0.0299 (10) 0.0427 (10) 0.0035 (8) 0.0034 (9) 0.0116 (8)
N1 0.0126 (11) 0.0246 (10) 0.0244 (9) 0.0045 (9) 0.0025 (10) 0.0081 (8)
C1 0.0171 (14) 0.0310 (11) 0.0249 (10) 0.0080 (11) −0.0005 (11) 0.0072 (9)
C2 0.0178 (13) 0.0312 (13) 0.0380 (14) 0.0009 (12) −0.0006 (13) 0.0094 (11)
C3 0.0269 (17) 0.0460 (16) 0.0359 (14) 0.0036 (14) −0.0049 (13) −0.0062 (12)
C4 0.0273 (15) 0.0627 (19) 0.0312 (12) 0.0067 (18) 0.0001 (15) −0.0022 (12)
C5 0.0229 (15) 0.0514 (17) 0.0282 (13) 0.0013 (14) 0.0047 (13) 0.0095 (12)
C6 0.0188 (13) 0.0313 (13) 0.0261 (11) 0.0052 (12) 0.0023 (12) 0.0084 (10)
C7 0.0226 (15) 0.0352 (13) 0.0404 (14) 0.0043 (13) 0.0041 (13) 0.0134 (11)
C8 0.0249 (15) 0.0285 (14) 0.0419 (14) −0.0021 (13) −0.0034 (12) 0.0033 (11)
C9 0.0242 (17) 0.0307 (12) 0.0271 (11) 0.0073 (12) 0.0011 (12) 0.0060 (9)
C10 0.0189 (12) 0.0245 (11) 0.0278 (10) 0.0071 (12) 0.0013 (13) 0.0058 (8)
C11 0.0214 (15) 0.0234 (11) 0.0264 (11) 0.0057 (11) 0.0021 (11) 0.0045 (9)
C12 0.0202 (16) 0.0237 (11) 0.0195 (10) 0.0030 (10) 0.0020 (11) 0.0028 (8)
C13 0.0116 (12) 0.0168 (10) 0.0222 (10) −0.0002 (9) −0.0031 (10) 0.0016 (8)
C14 0.0123 (11) 0.0158 (9) 0.0197 (9) −0.0006 (8) −0.0020 (11) −0.0013 (8)
C15 0.0157 (12) 0.0187 (10) 0.0262 (10) −0.0041 (10) −0.0027 (10) 0.0052 (8)
C16 0.0170 (15) 0.0169 (10) 0.0393 (13) −0.0006 (9) −0.0036 (12) 0.0034 (8)
C17 0.0140 (15) 0.0231 (11) 0.0349 (12) 0.0026 (10) −0.0006 (11) −0.0088 (9)
C18 0.0146 (15) 0.0267 (11) 0.0210 (9) 0.0031 (10) −0.0019 (10) −0.0022 (8)

Geometric parameters (Å, º)

Br1—C14 1.896 (2) C8—C9 1.422 (4)
O1—C12 1.223 (3) C8—H8A 0.9500
N1—C12 1.367 (3) C9—C10 1.352 (4)
N1—C13 1.416 (3) C9—H9A 0.9500
N1—H1N1 0.86 (3) C10—C11 1.514 (3)
C1—C10 1.420 (3) C11—C12 1.517 (3)
C1—C2 1.421 (4) C11—H11A 0.9900
C1—C6 1.434 (3) C11—H11B 0.9900
C2—C3 1.367 (4) C13—C18 1.396 (3)
C2—H2A 0.9500 C13—C14 1.396 (3)
C3—C4 1.394 (4) C14—C15 1.384 (3)
C3—H3A 0.9500 C15—C16 1.382 (3)
C4—C5 1.349 (4) C15—H15A 0.9500
C4—H4A 0.9500 C16—C17 1.388 (3)
C5—C6 1.415 (4) C16—H16A 0.9500
C5—H5A 0.9500 C17—C18 1.386 (3)
C6—C7 1.412 (4) C17—H17A 0.9500
C7—C8 1.370 (4) C18—H18A 0.9500
C7—H7A 0.9500
C12—N1—C13 123.4 (2) C9—C10—C1 119.4 (2)
C12—N1—H1N1 121.0 (16) C9—C10—C11 121.0 (2)
C13—N1—H1N1 115.6 (16) C1—C10—C11 119.6 (2)
C10—C1—C2 123.1 (2) C10—C11—C12 112.3 (2)
C10—C1—C6 118.9 (2) C10—C11—H11A 109.1
C2—C1—C6 118.0 (2) C12—C11—H11A 109.1
C3—C2—C1 121.3 (3) C10—C11—H11B 109.1
C3—C2—H2A 119.3 C12—C11—H11B 109.1
C1—C2—H2A 119.3 H11A—C11—H11B 107.9
C2—C3—C4 119.9 (3) O1—C12—N1 122.4 (2)
C2—C3—H3A 120.1 O1—C12—C11 121.7 (2)
C4—C3—H3A 120.1 N1—C12—C11 115.8 (2)
C5—C4—C3 121.0 (3) C18—C13—C14 118.3 (2)
C5—C4—H4A 119.5 C18—C13—N1 120.8 (2)
C3—C4—H4A 119.5 C14—C13—N1 120.9 (2)
C4—C5—C6 121.5 (3) C15—C14—C13 121.2 (2)
C4—C5—H5A 119.3 C15—C14—Br1 119.14 (17)
C6—C5—H5A 119.3 C13—C14—Br1 119.61 (16)
C7—C6—C5 122.1 (2) C16—C15—C14 119.7 (2)
C7—C6—C1 119.7 (2) C16—C15—H15A 120.2
C5—C6—C1 118.2 (2) C14—C15—H15A 120.2
C8—C7—C6 120.1 (3) C15—C16—C17 120.1 (2)
C8—C7—H7A 119.9 C15—C16—H16A 120.0
C6—C7—H7A 119.9 C17—C16—H16A 120.0
C7—C8—C9 119.5 (3) C18—C17—C16 120.2 (2)
C7—C8—H8A 120.2 C18—C17—H17A 119.9
C9—C8—H8A 120.2 C16—C17—H17A 119.9
C10—C9—C8 122.3 (2) C17—C18—C13 120.5 (2)
C10—C9—H9A 118.8 C17—C18—H18A 119.7
C8—C9—H9A 118.8 C13—C18—H18A 119.7
C10—C1—C2—C3 179.1 (3) C6—C1—C10—C11 −177.6 (2)
C6—C1—C2—C3 −0.9 (4) C9—C10—C11—C12 −104.1 (3)
C1—C2—C3—C4 1.4 (4) C1—C10—C11—C12 74.6 (3)
C2—C3—C4—C5 −1.5 (5) C13—N1—C12—O1 5.2 (4)
C3—C4—C5—C6 1.1 (5) C13—N1—C12—C11 −172.3 (2)
C4—C5—C6—C7 −180.0 (3) C10—C11—C12—O1 23.2 (3)
C4—C5—C6—C1 −0.6 (4) C10—C11—C12—N1 −159.3 (2)
C10—C1—C6—C7 −0.1 (4) C12—N1—C13—C18 −50.8 (3)
C2—C1—C6—C7 179.9 (2) C12—N1—C13—C14 128.9 (3)
C10—C1—C6—C5 −179.5 (3) C18—C13—C14—C15 −0.6 (3)
C2—C1—C6—C5 0.4 (4) N1—C13—C14—C15 179.7 (2)
C5—C6—C7—C8 178.9 (3) C18—C13—C14—Br1 178.87 (17)
C1—C6—C7—C8 −0.5 (4) N1—C13—C14—Br1 −0.8 (3)
C6—C7—C8—C9 0.0 (4) C13—C14—C15—C16 1.7 (3)
C7—C8—C9—C10 1.1 (4) Br1—C14—C15—C16 −177.77 (17)
C8—C9—C10—C1 −1.7 (4) C14—C15—C16—C17 −1.5 (3)
C8—C9—C10—C11 177.0 (2) C15—C16—C17—C18 0.2 (4)
C2—C1—C10—C9 −178.8 (2) C16—C17—C18—C13 0.9 (4)
C6—C1—C10—C9 1.2 (4) C14—C13—C18—C17 −0.7 (3)
C2—C1—C10—C11 2.5 (4) N1—C13—C18—C17 179.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1i 0.86 (3) 2.03 (3) 2.855 (3) 163 (2)
C11—H11A···O1i 0.99 2.55 3.279 (3) 130

Symmetry code: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6923).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1385. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29–o30. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812034423/hb6923sup1.cif

e-68-o2657-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034423/hb6923Isup2.hkl

e-68-o2657-Isup2.hkl (189.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812034423/hb6923Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES