Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 11;68(Pt 9):o2680. doi: 10.1107/S160053681203454X

5-(4-Bromo­phen­yl)-3-(4-fluoro­phen­yl)-1-phenyl-4,5-dihydro-1H-pyrazole

Hoong-Kun Fun a,*,, Tze Shyang Chia a, M Sapnakumari b, B Narayana b, B K Sarojini c
PMCID: PMC3435702  PMID: 22969573

Abstract

In the title compound, C21H16BrFN2, the fluoro-substituted benzene ring is disordered over two orientations about the C—F bond and the C—C bond between the benzene and pyrazole groups with a site-occupancy ratio of 0.516 (8):0.484 (8). The central pyrazole ring [maximum deviation = 0.035 (3) Å] makes dihedral angles of 22.4 (2), 11.0 (2), 77.19 (16) and 7.44 (17)° with the two disorder components of the benzene ring, the bromo-substituted benzene ring and the phenyl ring, respectively. In the crystal, mol­ecules are linked into a layer parallel to the bc plane through C—H⋯π inter­actions.

Related literature  

For background to pyrazoline derivatives, see: Fun et al. (2010); Samshuddin et al. (2010, 2011). For a related structure, see: Samshuddin et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o2680-scheme1.jpg

Experimental  

Crystal data  

  • C21H16BrFN2

  • M r = 395.27

  • Monoclinic, Inline graphic

  • a = 20.5345 (5) Å

  • b = 5.2689 (1) Å

  • c = 16.1929 (5) Å

  • β = 104.443 (2)°

  • V = 1696.61 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 100 K

  • 0.25 × 0.13 × 0.09 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.583, T max = 0.818

  • 16716 measured reflections

  • 4974 independent reflections

  • 3761 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.113

  • S = 1.01

  • 4974 reflections

  • 263 parameters

  • 130 restraints

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −0.99 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681203454X/is5174sup1.cif

e-68-o2680-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203454X/is5174Isup2.hkl

e-68-o2680-Isup2.hkl (243.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681203454X/is5174Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACg1i 1.00 2.60 3.522 (3) 153
C17—H17ACg1ii 0.95 2.99 3.752 (6) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. BN thanks the UGC for financial assistance through the SAP and BSR one-time grant for the purchase of chemicals.

supplementary crystallographic information

Comment

In continuation of our work on synthesis of pyrazoline derivatives (Fun et al., 2010; Samshuddin et al., 2010, 2011), the title compound was prepared and its crystal structure is now reported.

The asymmetric unit of the title compound is shown in Fig. 1. The fluoro-substituted benzene ring is disordered over two positions (C16–C21 and C16/C17X/C18X/C19/C20X/C21X) rotated about the C9—C16···C19—F1 axis with a site-occupancy ratio of 0.516 (8):0.484 (8). The central pyrazole ring [N1/N2/C7–C9; maximum deviation = 0.035 (3) Å at atom C7] makes dihedral angles of 77.19 (16), 7.44 (17), 22.4 (2) and 11.0 (2)° with the C1–C6 (A), C10–C15 (B), C16–C21 (C) and C16/C17X/C18X/C19/C20X/C21X (D) benzene rings, respectively. The dihedral angles between the benzene rings are A/B = 83.25 (15)°, A/C = 87.1 (2)°, A/D = 67.2 (2)°, B/C = 22.6 (2)° and B/D = 16.1 (2)°. The bond lengths and angles are comparable to those found in a related structure (Samshuddin et al., 2010). In the crystal, molecules are linked into a layer parallel to (100) through intermolecular C—H···π interactions (Table 1), involving Cg1 which is the centroid of the C10–C15 ring.

Experimental

A mixture of (2E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (3.05 g, 0.01 mol) and phenyl hydrazine (0.98 ml, 0.01 mol) in 50 ml of glacial acetic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from toluene. Orange blocks were grown from ethanol by slow evaporation method (m.p. 397–399 K).

Refinement

All H atoms were positioned geometrically (C—H = 0.95, 0.99 and 1.00 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). The fluoro-substituted benzene ring is statistically disordered over two conformations with a site-occupancy ratio of 0.516 (8):0.484 (8). Similarity (SAME), similar-ADP (SIMU) and FLAT restraints were used for the major and minor components of disordered fluoro-substituted benzene ring (C16–C21 and C16/C17X/C18X/C19/C20X/C21X). The highest peak is located at 0.31 Å from atom C17, whereas the deepest hole is located at 0.34 Å from atom C21.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids. The minor component of disorder is indicated by the open bonds.

Crystal data

C21H16BrFN2 F(000) = 800
Mr = 395.27 Dx = 1.547 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4161 reflections
a = 20.5345 (5) Å θ = 2.9–30.0°
b = 5.2689 (1) Å µ = 2.44 mm1
c = 16.1929 (5) Å T = 100 K
β = 104.443 (2)° Block, orange
V = 1696.61 (7) Å3 0.25 × 0.13 × 0.09 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4974 independent reflections
Radiation source: fine-focus sealed tube 3761 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
φ and ω scans θmax = 30.2°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −29→28
Tmin = 0.583, Tmax = 0.818 k = −7→7
16716 measured reflections l = −20→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0403P)2 + 3.9007P] where P = (Fo2 + 2Fc2)/3
4974 reflections (Δ/σ)max = 0.001
263 parameters Δρmax = 1.26 e Å3
130 restraints Δρmin = −0.99 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.438172 (16) 0.29092 (7) 0.31781 (2) 0.02527 (11)
F1 1.03501 (11) 1.0361 (5) 0.31750 (17) 0.0482 (7)
N1 0.76496 (13) 0.5313 (5) 0.52597 (18) 0.0205 (6)
N2 0.82467 (12) 0.5535 (5) 0.50180 (17) 0.0189 (5)
C1 0.58983 (16) 0.7495 (6) 0.4593 (2) 0.0198 (6)
H1A 0.5930 0.8942 0.4951 0.024*
C2 0.52691 (16) 0.6511 (6) 0.4199 (2) 0.0210 (7)
H2A 0.4872 0.7281 0.4282 0.025*
C3 0.52306 (15) 0.4394 (6) 0.3684 (2) 0.0194 (6)
C4 0.58002 (16) 0.3298 (6) 0.3531 (2) 0.0212 (6)
H4A 0.5765 0.1866 0.3166 0.025*
C5 0.64254 (16) 0.4316 (6) 0.3919 (2) 0.0202 (6)
H5A 0.6819 0.3593 0.3808 0.024*
C6 0.64832 (15) 0.6383 (6) 0.4469 (2) 0.0175 (6)
C7 0.71689 (15) 0.7394 (6) 0.4928 (2) 0.0184 (6)
H7A 0.7125 0.8523 0.5408 0.022*
C8 0.75404 (15) 0.8818 (6) 0.4346 (2) 0.0193 (6)
H8A 0.7292 0.8694 0.3740 0.023*
H8B 0.7606 1.0630 0.4508 0.023*
C9 0.82035 (15) 0.7440 (6) 0.4509 (2) 0.0183 (6)
C10 0.76131 (15) 0.3686 (6) 0.59269 (19) 0.0171 (6)
C11 0.81265 (15) 0.1909 (6) 0.6237 (2) 0.0202 (6)
H11A 0.8515 0.1880 0.6020 0.024*
C12 0.80621 (16) 0.0197 (6) 0.6863 (2) 0.0232 (7)
H12A 0.8408 −0.1014 0.7068 0.028*
C13 0.75020 (17) 0.0222 (7) 0.7196 (2) 0.0237 (7)
H13A 0.7461 −0.0966 0.7621 0.028*
C14 0.70032 (16) 0.2001 (7) 0.6900 (2) 0.0238 (7)
H14A 0.6620 0.2038 0.7129 0.029*
C15 0.70535 (16) 0.3739 (6) 0.6272 (2) 0.0213 (6)
H15A 0.6708 0.4958 0.6078 0.026*
C16 0.87551 (16) 0.8212 (6) 0.4136 (2) 0.0228 (7)
C19 0.98129 (18) 0.9645 (7) 0.3479 (2) 0.0333 (8)
C17 0.8674 (3) 0.9700 (12) 0.3440 (4) 0.0143 (13) 0.516 (8)
H17A 0.8232 1.0218 0.3153 0.017* 0.516 (8)
C18 0.9209 (4) 1.0507 (15) 0.3126 (5) 0.0138 (14) 0.516 (8)
H18A 0.9139 1.1664 0.2662 0.017* 0.516 (8)
C20 0.9970 (4) 0.8198 (14) 0.4250 (5) 0.0348 (17) 0.516 (8)
H20A 1.0420 0.7748 0.4526 0.042* 0.516 (8)
C21 0.9429 (3) 0.7482 (13) 0.4575 (5) 0.0287 (16) 0.516 (8)
H21A 0.9505 0.6513 0.5085 0.034* 0.516 (8)
C17X 0.8755 (4) 1.0417 (15) 0.3726 (4) 0.0186 (15) 0.484 (8)
H17B 0.8387 1.1544 0.3684 0.022* 0.484 (8)
C18X 0.9274 (5) 1.1126 (19) 0.3360 (5) 0.0211 (17) 0.484 (8)
H18B 0.9243 1.2636 0.3031 0.025* 0.484 (8)
C20X 0.9841 (3) 0.7160 (14) 0.3859 (4) 0.0226 (14) 0.484 (8)
H20B 1.0210 0.6052 0.3878 0.027* 0.484 (8)
C21X 0.9309 (3) 0.6444 (14) 0.4195 (4) 0.0200 (14) 0.484 (8)
H21B 0.9307 0.4834 0.4458 0.024* 0.484 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01981 (15) 0.03041 (18) 0.02509 (18) −0.00327 (13) 0.00464 (12) −0.00043 (15)
F1 0.0264 (11) 0.0682 (17) 0.0583 (16) 0.0129 (11) 0.0263 (11) 0.0328 (14)
N1 0.0165 (12) 0.0241 (14) 0.0221 (14) 0.0036 (10) 0.0071 (11) 0.0078 (11)
N2 0.0164 (11) 0.0212 (14) 0.0202 (14) 0.0005 (10) 0.0064 (10) 0.0037 (11)
C1 0.0255 (15) 0.0129 (16) 0.0224 (15) 0.0022 (11) 0.0084 (13) −0.0011 (12)
C2 0.0204 (14) 0.0199 (16) 0.0258 (17) 0.0022 (11) 0.0114 (13) 0.0010 (13)
C3 0.0180 (13) 0.0225 (16) 0.0182 (15) −0.0019 (11) 0.0051 (12) 0.0032 (13)
C4 0.0254 (15) 0.0202 (17) 0.0179 (15) 0.0027 (12) 0.0050 (12) −0.0005 (12)
C5 0.0201 (14) 0.0223 (16) 0.0182 (15) 0.0072 (12) 0.0050 (12) 0.0003 (12)
C6 0.0192 (14) 0.0164 (14) 0.0174 (15) 0.0020 (11) 0.0057 (12) 0.0026 (11)
C7 0.0182 (13) 0.0170 (16) 0.0198 (15) 0.0027 (11) 0.0043 (12) 0.0004 (12)
C8 0.0207 (14) 0.0174 (14) 0.0209 (16) 0.0019 (11) 0.0073 (12) 0.0021 (12)
C9 0.0192 (13) 0.0164 (16) 0.0193 (15) 0.0014 (11) 0.0048 (12) 0.0010 (12)
C10 0.0183 (13) 0.0182 (14) 0.0132 (14) −0.0042 (11) 0.0008 (11) 0.0002 (11)
C11 0.0168 (13) 0.0219 (15) 0.0203 (15) −0.0022 (12) 0.0017 (12) 0.0010 (13)
C12 0.0214 (15) 0.0212 (16) 0.0233 (17) −0.0021 (12) −0.0015 (13) 0.0038 (13)
C13 0.0279 (16) 0.0258 (17) 0.0165 (16) −0.0049 (13) 0.0039 (13) 0.0062 (13)
C14 0.0247 (15) 0.0282 (17) 0.0197 (16) −0.0057 (13) 0.0082 (13) 0.0009 (14)
C15 0.0218 (14) 0.0231 (16) 0.0193 (16) 0.0006 (12) 0.0055 (13) 0.0012 (13)
C16 0.0207 (14) 0.0230 (16) 0.0251 (16) 0.0023 (12) 0.0066 (12) 0.0045 (13)
C19 0.0246 (16) 0.042 (2) 0.038 (2) 0.0051 (15) 0.0157 (15) 0.0160 (17)
C17 0.011 (2) 0.022 (3) 0.007 (3) −0.002 (2) −0.004 (2) 0.002 (2)
C18 0.015 (3) 0.020 (4) 0.005 (3) −0.004 (2) 0.000 (3) −0.001 (2)
C20 0.023 (3) 0.041 (4) 0.040 (4) 0.003 (3) 0.005 (3) 0.014 (3)
C21 0.026 (3) 0.033 (4) 0.028 (3) 0.003 (3) 0.006 (3) 0.012 (3)
C17X 0.018 (3) 0.018 (3) 0.019 (4) 0.001 (3) 0.004 (3) 0.000 (3)
C18X 0.026 (3) 0.022 (4) 0.013 (4) −0.004 (3) 0.001 (3) 0.000 (3)
C20X 0.022 (3) 0.026 (3) 0.020 (3) 0.001 (3) 0.006 (2) −0.005 (3)
C21X 0.027 (3) 0.020 (3) 0.014 (3) −0.001 (2) 0.005 (2) −0.005 (2)

Geometric parameters (Å, º)

Br1—C3 1.900 (3) C12—C13 1.386 (5)
F1—C19 1.368 (4) C12—H12A 0.9500
N1—N2 1.382 (3) C13—C14 1.383 (5)
N1—C10 1.395 (4) C13—H13A 0.9500
N1—C7 1.484 (4) C14—C15 1.391 (5)
N2—C9 1.288 (4) C14—H14A 0.9500
C1—C2 1.391 (5) C15—H15A 0.9500
C1—C6 1.395 (4) C16—C17X 1.338 (9)
C1—H1A 0.9500 C16—C17 1.349 (8)
C2—C3 1.383 (5) C16—C21 1.441 (7)
C2—H2A 0.9500 C16—C21X 1.454 (7)
C3—C4 1.381 (4) C19—C18 1.310 (9)
C4—C5 1.389 (4) C19—C18X 1.328 (11)
C4—H4A 0.9500 C19—C20 1.429 (8)
C5—C6 1.393 (4) C19—C20X 1.442 (8)
C5—H5A 0.9500 C17—C18 1.389 (9)
C6—C7 1.516 (4) C17—H17A 0.9500
C7—C8 1.546 (4) C18—H18A 0.9500
C7—H7A 1.0000 C20—C21 1.395 (9)
C8—C9 1.507 (4) C20—H20A 0.9500
C8—H8A 0.9900 C21—H21A 0.9500
C8—H8B 0.9900 C17X—C18X 1.394 (10)
C9—C16 1.467 (4) C17X—H17B 0.9500
C10—C15 1.398 (4) C18X—H18B 0.9500
C10—C11 1.406 (4) C20X—C21X 1.389 (9)
C11—C12 1.388 (5) C20X—H20B 0.9500
C11—H11A 0.9500 C21X—H21B 0.9500
N2—N1—C10 119.6 (2) C12—C13—H13A 120.4
N2—N1—C7 113.1 (2) C13—C14—C15 121.1 (3)
C10—N1—C7 125.1 (3) C13—C14—H14A 119.5
C9—N2—N1 108.8 (2) C15—C14—H14A 119.5
C2—C1—C6 120.8 (3) C14—C15—C10 119.8 (3)
C2—C1—H1A 119.6 C14—C15—H15A 120.1
C6—C1—H1A 119.6 C10—C15—H15A 120.1
C3—C2—C1 118.9 (3) C17X—C16—C21 110.9 (4)
C3—C2—H2A 120.5 C17—C16—C21 118.1 (5)
C1—C2—H2A 120.5 C17X—C16—C21X 119.5 (5)
C4—C3—C2 121.5 (3) C17—C16—C21X 111.1 (4)
C4—C3—Br1 118.5 (2) C17X—C16—C9 122.7 (4)
C2—C3—Br1 120.0 (2) C17—C16—C9 123.9 (4)
C3—C4—C5 119.1 (3) C21—C16—C9 117.9 (4)
C3—C4—H4A 120.5 C21X—C16—C9 117.8 (4)
C5—C4—H4A 120.5 C18—C19—F1 120.5 (5)
C4—C5—C6 120.9 (3) C18X—C19—F1 120.2 (5)
C4—C5—H5A 119.6 C18—C19—C20 123.3 (5)
C6—C5—H5A 119.6 C18X—C19—C20 116.0 (5)
C5—C6—C1 118.8 (3) F1—C19—C20 115.8 (4)
C5—C6—C7 120.6 (3) C18—C19—C20X 115.7 (5)
C1—C6—C7 120.6 (3) C18X—C19—C20X 122.6 (6)
N1—C7—C6 111.7 (2) F1—C19—C20X 117.0 (4)
N1—C7—C8 101.2 (2) C16—C17—C18 122.7 (6)
C6—C7—C8 114.3 (3) C16—C17—H17A 118.7
N1—C7—H7A 109.8 C18—C17—H17A 118.7
C6—C7—H7A 109.8 C19—C18—C17 118.9 (7)
C8—C7—H7A 109.8 C19—C18—H18A 120.6
C9—C8—C7 102.8 (2) C17—C18—H18A 120.6
C9—C8—H8A 111.2 C21—C20—C19 116.5 (6)
C7—C8—H8A 111.2 C21—C20—H20A 121.7
C9—C8—H8B 111.2 C19—C20—H20A 121.7
C7—C8—H8B 111.2 C20—C21—C16 119.9 (6)
H8A—C8—H8B 109.1 C20—C21—H21A 120.0
N2—C9—C16 122.8 (3) C16—C21—H21A 120.0
N2—C9—C8 113.7 (3) C16—C17X—C18X 122.6 (7)
C16—C9—C8 123.4 (3) C16—C17X—H17B 118.7
N1—C10—C15 120.4 (3) C18X—C17X—H17B 118.7
N1—C10—C11 120.4 (3) C19—C18X—C17X 118.6 (8)
C15—C10—C11 119.2 (3) C19—C18X—H18B 120.7
C12—C11—C10 119.7 (3) C17X—C18X—H18B 120.7
C12—C11—H11A 120.2 C21X—C20X—C19 117.5 (6)
C10—C11—H11A 120.2 C21X—C20X—H20B 121.2
C13—C12—C11 121.1 (3) C19—C20X—H20B 121.2
C13—C12—H12A 119.4 C20X—C21X—C16 118.6 (6)
C11—C12—H12A 119.4 C20X—C21X—H21B 120.7
C14—C13—C12 119.1 (3) C16—C21X—H21B 120.7
C14—C13—H13A 120.4
C10—N1—N2—C9 −168.5 (3) C8—C9—C16—C17 −19.9 (5)
C7—N1—N2—C9 −4.5 (4) N2—C9—C16—C21 −23.3 (5)
C6—C1—C2—C3 0.4 (5) C8—C9—C16—C21 155.5 (4)
C1—C2—C3—C4 −2.2 (5) N2—C9—C16—C21X 13.7 (5)
C1—C2—C3—Br1 177.1 (2) C8—C9—C16—C21X −167.4 (4)
C2—C3—C4—C5 1.4 (5) C17X—C16—C17—C18 80.8 (12)
Br1—C3—C4—C5 −177.9 (2) C21—C16—C17—C18 1.2 (4)
C3—C4—C5—C6 1.3 (5) C21X—C16—C17—C18 −33.9 (4)
C4—C5—C6—C1 −3.0 (5) C9—C16—C17—C18 176.7 (4)
C4—C5—C6—C7 176.6 (3) C18X—C19—C18—C17 −85.6 (19)
C2—C1—C6—C5 2.2 (5) F1—C19—C18—C17 178.7 (4)
C2—C1—C6—C7 −177.5 (3) C20—C19—C18—C17 −9.2 (6)
N2—N1—C7—C6 128.1 (3) C20X—C19—C18—C17 28.6 (6)
C10—N1—C7—C6 −69.1 (4) C16—C17—C18—C19 5.1 (6)
N2—N1—C7—C8 6.1 (3) C18—C19—C20—C21 6.8 (6)
C10—N1—C7—C8 168.9 (3) C18X—C19—C20—C21 30.2 (7)
C5—C6—C7—N1 −42.2 (4) F1—C19—C20—C21 179.2 (5)
C1—C6—C7—N1 137.4 (3) C20X—C19—C20—C21 −80.2 (8)
C5—C6—C7—C8 71.9 (4) C19—C20—C21—C16 −0.2 (7)
C1—C6—C7—C8 −108.4 (3) C17X—C16—C21—C20 −30.3 (6)
N1—C7—C8—C9 −5.0 (3) C17—C16—C21—C20 −3.5 (6)
C6—C7—C8—C9 −125.3 (3) C21X—C16—C21—C20 82.0 (8)
N1—N2—C9—C16 179.7 (3) C9—C16—C21—C20 −179.3 (4)
N1—N2—C9—C8 0.7 (4) C17—C16—C17X—C18X −77.7 (12)
C7—C8—C9—N2 3.0 (4) C21—C16—C17X—C18X 34.0 (5)
C7—C8—C9—C16 −175.9 (3) C21X—C16—C17X—C18X −1.0 (4)
N2—N1—C10—C15 169.6 (3) C9—C16—C17X—C18X −178.8 (4)
C7—N1—C10—C15 7.7 (5) C18—C19—C18X—C17X 87.1 (19)
N2—N1—C10—C11 −12.9 (4) F1—C19—C18X—C17X −175.8 (4)
C7—N1—C10—C11 −174.7 (3) C20—C19—C18X—C17X −28.3 (6)
N1—C10—C11—C12 −175.9 (3) C20X—C19—C18X—C17X 9.7 (6)
C15—C10—C11—C12 1.7 (5) C16—C17X—C18X—C19 −5.4 (6)
C10—C11—C12—C13 −0.7 (5) C18—C19—C20X—C21X −30.8 (6)
C11—C12—C13—C14 −0.5 (5) C18X—C19—C20X—C21X −7.4 (6)
C12—C13—C14—C15 0.6 (5) F1—C19—C20X—C21X 177.9 (4)
C13—C14—C15—C10 0.5 (5) C20—C19—C20X—C21X 81.3 (8)
N1—C10—C15—C14 176.0 (3) C19—C20X—C21X—C16 0.8 (6)
C11—C10—C15—C14 −1.6 (5) C17X—C16—C21X—C20X 3.1 (5)
N2—C9—C16—C17X −168.4 (4) C17—C16—C21X—C20X 29.6 (5)
C8—C9—C16—C17X 10.4 (5) C21—C16—C21X—C20X −79.9 (8)
N2—C9—C16—C17 161.2 (4) C9—C16—C21X—C20X −178.9 (4)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C10–C15 ring.

D—H···A D—H H···A D···A D—H···A
C7—H7A···Cg1i 1.00 2.60 3.522 (3) 153
C17—H17A···Cg1ii 0.95 2.99 3.752 (6) 138

Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5174).

References

  1. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  3. Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583. [DOI] [PMC free article] [PubMed]
  4. Samshuddin, S., Narayana, B., Baktir, Z., Akkurt, M. & Yathirajan, H. S. (2011). Der Pharma Chem. 3, 487–493.
  5. Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681203454X/is5174sup1.cif

e-68-o2680-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203454X/is5174Isup2.hkl

e-68-o2680-Isup2.hkl (243.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681203454X/is5174Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES