Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 11;68(Pt 9):o2684–o2685. doi: 10.1107/S1600536812034812

(E)-1-(2,4-Dinitro­phen­yl)-2-[1-(3-nitro­phen­yl)ethyl­idene]hydrazine

Hoong-Kun Fun a,*,, Suchada Chantrapromma b,§, Boonlerd Nilwanna b, Thawanrat Kobkeatthawin b, Nawong Boonnak b
PMCID: PMC3435706  PMID: 22969577

Abstract

In the asymmetric unit of the title compound, C14H11N5O6, there are three crystallographically independent mol­ecules with similar conformations but some differences in bond angles. The mol­ecules are slightly twisted with the dihedral angles between the benzene rings being 10.02 (14), 8.41 (15) and 1.40 (14)°. In each mol­ecule, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions into a three-dimensional network. π–π inter­actions with centroid–centroid distances of 3.5635 (17)–3.8273 (18) Å are observed.

Related literature  

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Chantrapromma et al. (2011). For background to and the biological activity of hydro­zones, see: Cui et al. (2010); Krishnamoorthy et al. (2011); Molyneux (2004); Raja et al. (2012); Sathyadevi et al. (2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o2684-scheme1.jpg

Experimental  

Crystal data  

  • C14H11N5O6

  • M r = 345.28

  • Monoclinic, Inline graphic

  • a = 7.3309 (2) Å

  • b = 38.3569 (8) Å

  • c = 16.8027 (4) Å

  • β = 115.158 (1)°

  • V = 4276.57 (18) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.49 × 0.10 × 0.10 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.940, T max = 0.988

  • 49752 measured reflections

  • 12460 independent reflections

  • 7719 reflections with I > 2σ(I)

  • R int = 0.072

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.077

  • wR(F 2) = 0.159

  • S = 1.07

  • 12460 reflections

  • 679 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812034812/is5180sup1.cif

e-68-o2684-sup1.cif (51.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034812/is5180Isup2.hkl

e-68-o2684-Isup2.hkl (609.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812034812/is5180Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O1A 0.88 1.98 2.615 (3) 128
N1B—H1BA⋯O1B 0.88 2.01 2.637 (3) 127
N1C—H1CA⋯O1C 0.88 1.98 2.617 (3) 129
C3A—H3AA⋯O2A i 0.95 2.44 3.320 (3) 154
C3B—H3BA⋯O2C ii 0.95 2.40 3.188 (3) 140
C3C—H3CA⋯O2B iii 0.95 2.52 3.413 (3) 156
C14B—H14F⋯O4A iv 0.98 2.53 3.316 (4) 137
C14C—H14J⋯O4C iii 0.98 2.54 3.253 (4) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

BN and TK thank the Crystal Materials Research Unit, Prince of Songkla University, for financial support. NB thanks Prince of Songkla University for a postdoctoral fellowship. The authors thank Prince of Songkla University and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. Mr Teerasak Anantapong, Department of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, is acknowledged for the bacterial assay.

supplementary crystallographic information

Comment

Considerable attentions have been devoted to hydrazones and their complexes which have been acknowledged to possess diverse biological properties as antibacterial, antifungal, anagesic, anti-inflammatory as well as antioxidant activities (Cui et al., 2010; Krishnamoorthy et al., 2011; Raja et al., 2012; Sathyadevi et al., 2012). In our on-going research on bioactivity of hydrazones, the title compound (I) was synthesized and evaluated for antioxidant activity by DPPH scavenging (Molyneux, 2004) and was found to be weakly active with 30% inhibition. It was also screened for antibacterial activity and found to be inactive. Herein we report the synthesis and crystal structure of (I).

In the asymmetric unit of (I), C14H11N5O6, there are three crystallographically independent molecules A, B and C with similar conformations but some differences in bond angles (Fig. 1). The molecular structure is slightly twisted with the dihedral angle between the two benzene rings being 10.02 (14), 8.41 (15) and 1.40 (14)° in molecule A, B and C, respectively. The central ethylidenehydrazine bridge is planar with the torsion angles N1–N2–C7–C14 = 2.6 (4), -3.1 (4) and -2.1 (3)° in molecules A, B and C, respectively. This central N1/N2/C7/C14 plane makes dihedral angles of 12.90 (18) and 20.11 (18)° with the 2,4-dinitro- and 3-nitro-substituted benzene rings, respectively in molecule A, whereas the corresponding values are 12.50 (18) and 20.51 (18)° in molecule B, and 11.70 (18) and 12.33 (18)° in molecule C. In all three molecules, the nitro group of 3-nitrophenyl are co-planar with their bound benzene rings with r.m.s. deviations of 0.079 (2), 0.030 (2) and 0.025 (3) Å in molecules A, B and C, respectively, for the nine non H-atoms (C8–C13/N5/O5–O6). In the 2,4-dinitrophenyl, the ortho-nitro group lies on the same plane with its bound benzene ring with r.m.s. deviations of 0.023 (2), 0.075 (2) and 0.025 (2) Å in molecules A, B and C, repectively, for the nine non H-atoms (C1–C6/N3/O1–O2), but the para-nitro group is deviated with the torsion angles O3–N4–C4–C3 = 19.8 (3)° and O4–N4–C4–C3 = -160.9 (2)° in molecule A whereas the corresponding values are -9.8 (4) and 170.6 (2)° in molecule B, and -21.0 (3) and 159.4 (2)° in molecule C. In each molecule, intramolecular N—H···O hydrogen bonds between the hydrazone-NH and the ortho-nitro group (Fig. 1 and Table 1) generate three S(6) ring motifs (Bernstein et al., 1995). The bond distances are in normal ranges (Allen et al., 1987) and are comparable with the related structure (Chantrapromma et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked by C—H···O weak interactions (Table 1) into a three-dimensional network. π–π interactions were presented with the distances of Cg1···Cg6 = 3.5635 (17) Å, Cg2···Cg5 = 3.5650 (18) Å, Cg3···Cg4v = 3.6544 (18) Å and Cg3···Cg4vi = 3.8273 (18) Å [symmetry codes: (v) 1 - x, 2 - y, 2 - z; (vi) 2 - x, 2 - y, 2 - z]; Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of C1A–C6A, C8A–C13A, C1B–C6B, C8B–C13BA, C1C–C6C and C8C–C13C benzene rings, respectively.

Experimental

The title compound (I) was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10.00 ml) and H2SO4 (conc.) (98%, 0.50 ml) was slowly added with stirring. 3-Nitroacetophenone (0.35 g, 2 mmol) in ethanol (10.00 ml) was then added to the solution with continuous stirring. The solution was refluxed for 1 hr yielding an yellow solid which was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from ethanol by slow evaporation of the solvent at room temperature over several days (m.p. 507–508 K).

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.88 Å, C—H = 0.95 Å for aromatic and 0.98 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing diagram of the title compound viewed approximately along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H11N5O6 F(000) = 2136
Mr = 345.28 Dx = 1.609 Mg m3
Monoclinic, P21/c Melting point = 507–508 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.3309 (2) Å Cell parameters from 12460 reflections
b = 38.3569 (8) Å θ = 1.1–30.0°
c = 16.8027 (4) Å µ = 0.13 mm1
β = 115.158 (1)° T = 100 K
V = 4276.57 (18) Å3 Block, yellow
Z = 12 0.49 × 0.10 × 0.10 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 12460 independent reflections
Radiation source: sealed tube 7719 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.072
φ and ω scans θmax = 30.0°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→10
Tmin = 0.940, Tmax = 0.988 k = −49→53
49752 measured reflections l = −22→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0437P)2 + 3.8937P] where P = (Fo2 + 2Fc2)/3
12460 reflections (Δ/σ)max = 0.001
679 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 1.0005 (3) 0.92844 (5) 0.64127 (11) 0.0268 (4)
O2A 0.9875 (3) 0.97771 (5) 0.57674 (12) 0.0276 (4)
O3A 0.6139 (3) 0.99217 (5) 0.26790 (13) 0.0359 (5)
O4A 0.3472 (3) 0.95996 (5) 0.20354 (11) 0.0254 (4)
O5A 0.2251 (3) 0.75669 (5) 0.35614 (12) 0.0261 (4)
O6A 0.2531 (4) 0.70272 (5) 0.39490 (14) 0.0472 (6)
N1A 0.7915 (3) 0.87484 (5) 0.55324 (13) 0.0172 (4)
H1AA 0.8764 0.8817 0.6060 0.021*
N2A 0.7233 (3) 0.84100 (5) 0.53897 (13) 0.0171 (4)
N3A 0.9363 (3) 0.94709 (5) 0.57465 (13) 0.0177 (4)
N4A 0.5092 (3) 0.96680 (6) 0.26601 (14) 0.0209 (5)
N5A 0.3093 (3) 0.73305 (6) 0.40790 (14) 0.0241 (5)
C1A 0.7255 (4) 0.89752 (6) 0.48449 (15) 0.0151 (5)
C2A 0.7932 (3) 0.93258 (6) 0.49190 (15) 0.0150 (5)
C3A 0.7244 (4) 0.95503 (6) 0.41999 (16) 0.0167 (5)
H3AA 0.7756 0.9781 0.4254 0.020*
C4A 0.5813 (4) 0.94319 (6) 0.34122 (15) 0.0169 (5)
C5A 0.5038 (4) 0.90923 (6) 0.33111 (16) 0.0175 (5)
H5AA 0.4012 0.9019 0.2764 0.021*
C6A 0.5780 (4) 0.88679 (6) 0.40110 (15) 0.0175 (5)
H6AA 0.5296 0.8635 0.3936 0.021*
C7A 0.7690 (4) 0.82152 (6) 0.60742 (15) 0.0163 (5)
C8A 0.6995 (4) 0.78476 (6) 0.58883 (15) 0.0160 (5)
C9A 0.5443 (4) 0.77613 (6) 0.50711 (15) 0.0170 (5)
H9AA 0.4835 0.7934 0.4633 0.020*
C10A 0.4817 (4) 0.74167 (6) 0.49183 (16) 0.0193 (5)
C11A 0.5691 (4) 0.71538 (6) 0.55242 (17) 0.0220 (5)
H11A 0.5253 0.6919 0.5391 0.026*
C12A 0.7215 (4) 0.72408 (7) 0.63267 (17) 0.0219 (5)
H12A 0.7839 0.7065 0.6754 0.026*
C13A 0.7846 (4) 0.75853 (6) 0.65159 (16) 0.0189 (5)
H13A 0.8868 0.7643 0.7079 0.023*
C14A 0.8828 (4) 0.83316 (7) 0.70094 (17) 0.0272 (6)
H14A 0.8557 0.8579 0.7058 0.041*
H14B 1.0276 0.8298 0.7191 0.041*
H14C 0.8396 0.8194 0.7390 0.041*
O1B 1.0090 (3) 0.91068 (5) 1.14668 (12) 0.0260 (4)
O2B 0.8666 (3) 0.86026 (4) 1.10339 (12) 0.0266 (4)
O3B 0.4725 (4) 0.83754 (6) 0.80216 (16) 0.0654 (9)
O4B 0.2945 (3) 0.87838 (5) 0.71768 (12) 0.0334 (5)
O5B 0.3878 (3) 1.09140 (5) 0.83376 (11) 0.0236 (4)
O6B 0.5168 (3) 1.14326 (5) 0.84719 (12) 0.0309 (5)
N1B 0.8365 (3) 0.96614 (5) 1.05174 (13) 0.0190 (4)
H1BA 0.9170 0.9595 1.1054 0.023*
N2B 0.8059 (3) 1.00095 (5) 1.03058 (13) 0.0191 (4)
N3B 0.8860 (3) 0.89130 (5) 1.09028 (14) 0.0198 (4)
N4B 0.4247 (3) 0.86807 (6) 0.78739 (15) 0.0265 (5)
N5B 0.5170 (3) 1.11357 (6) 0.87446 (14) 0.0212 (5)
C1B 0.7396 (4) 0.94219 (6) 0.98780 (16) 0.0178 (5)
C2B 0.7587 (4) 0.90569 (6) 1.00424 (15) 0.0167 (5)
C3B 0.6541 (4) 0.88183 (6) 0.93861 (16) 0.0190 (5)
H3BA 0.6687 0.8575 0.9506 0.023*
C4B 0.5301 (4) 0.89357 (6) 0.85670 (16) 0.0192 (5)
C5B 0.5034 (4) 0.92931 (7) 0.83717 (16) 0.0193 (5)
H5BA 0.4142 0.9370 0.7800 0.023*
C6B 0.6080 (4) 0.95299 (6) 0.90184 (15) 0.0187 (5)
H6BA 0.5918 0.9772 0.8886 0.022*
C7B 0.8768 (4) 1.02291 (6) 1.09502 (16) 0.0168 (5)
C8B 0.8458 (4) 1.06007 (6) 1.06806 (15) 0.0164 (5)
C9B 0.6992 (4) 1.06913 (6) 0.98502 (15) 0.0170 (5)
H9BA 0.6163 1.0518 0.9459 0.020*
C10B 0.6771 (4) 1.10396 (6) 0.96097 (15) 0.0168 (5)
C11B 0.7940 (4) 1.13023 (6) 1.01474 (16) 0.0195 (5)
H11B 0.7764 1.1538 0.9957 0.023*
C12B 0.9374 (4) 1.12102 (6) 1.09710 (16) 0.0199 (5)
H12B 1.0197 1.1385 1.1356 0.024*
C13B 0.9629 (4) 1.08631 (6) 1.12452 (16) 0.0187 (5)
H13B 1.0602 1.0805 1.1818 0.022*
C14B 0.9801 (4) 1.01340 (7) 1.19055 (16) 0.0264 (6)
H14D 0.9211 0.9919 1.2008 0.040*
H14E 0.9627 1.0323 1.2260 0.040*
H14F 1.1241 1.0098 1.2072 0.040*
O1C −0.1689 (3) 0.74191 (5) 0.38978 (12) 0.0275 (4)
O2C −0.1244 (3) 0.69066 (5) 0.44882 (12) 0.0296 (5)
O3C 0.2722 (3) 0.67220 (5) 0.75401 (12) 0.0282 (4)
O4C 0.5339 (3) 0.70556 (5) 0.81641 (12) 0.0257 (4)
O5C 0.5986 (3) 0.91628 (5) 0.66988 (12) 0.0294 (4)
O6C 0.5778 (3) 0.96939 (5) 0.62208 (14) 0.0362 (5)
N1C 0.0454 (3) 0.79484 (5) 0.47944 (13) 0.0174 (4)
H1CA −0.0484 0.7885 0.4280 0.021*
N2C 0.1181 (3) 0.82847 (5) 0.49206 (13) 0.0170 (4)
N3C −0.0874 (3) 0.72206 (5) 0.45348 (14) 0.0199 (4)
N4C 0.3685 (3) 0.69869 (5) 0.75661 (13) 0.0192 (4)
N5C 0.5215 (3) 0.93881 (6) 0.61320 (14) 0.0225 (5)
C1C 0.1188 (4) 0.77154 (6) 0.54654 (16) 0.0163 (5)
C2C 0.0576 (4) 0.73607 (6) 0.53636 (15) 0.0168 (5)
C3C 0.1358 (4) 0.71267 (6) 0.60596 (16) 0.0175 (5)
H3CA 0.0887 0.6893 0.5990 0.021*
C4C 0.2817 (4) 0.72381 (6) 0.68475 (16) 0.0177 (5)
C5C 0.3507 (4) 0.75844 (6) 0.69789 (16) 0.0183 (5)
H5CA 0.4538 0.7655 0.7528 0.022*
C6C 0.2673 (4) 0.78189 (6) 0.63043 (16) 0.0186 (5)
H6CA 0.3094 0.8055 0.6399 0.022*
C7C 0.0635 (4) 0.84757 (6) 0.42229 (16) 0.0155 (5)
C8C 0.1381 (3) 0.88409 (6) 0.43691 (15) 0.0159 (5)
C9C 0.2878 (3) 0.89426 (6) 0.51852 (15) 0.0166 (5)
H9CA 0.3415 0.8782 0.5658 0.020*
C10C 0.3557 (4) 0.92842 (7) 0.52864 (16) 0.0188 (5)
C11C 0.2798 (4) 0.95319 (7) 0.46272 (17) 0.0213 (5)
H11C 0.3289 0.9765 0.4722 0.026*
C12C 0.1305 (4) 0.94299 (7) 0.38283 (17) 0.0224 (5)
H12C 0.0747 0.9595 0.3366 0.027*
C13C 0.0606 (4) 0.90885 (6) 0.36922 (16) 0.0184 (5)
H13C −0.0407 0.9022 0.3135 0.022*
C14C −0.0651 (4) 0.83538 (7) 0.33029 (16) 0.0213 (5)
H14G −0.0393 0.8106 0.3251 0.032*
H14H −0.0323 0.8489 0.2886 0.032*
H14J −0.2076 0.8387 0.3172 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0358 (11) 0.0155 (9) 0.0182 (9) −0.0019 (8) 0.0009 (9) 0.0017 (7)
O2A 0.0367 (11) 0.0116 (9) 0.0281 (10) −0.0104 (8) 0.0075 (9) −0.0028 (8)
O3A 0.0391 (12) 0.0254 (11) 0.0337 (11) −0.0106 (9) 0.0063 (10) 0.0128 (9)
O4A 0.0245 (10) 0.0247 (10) 0.0195 (9) 0.0024 (8) 0.0022 (8) 0.0006 (8)
O5A 0.0274 (10) 0.0230 (10) 0.0221 (9) −0.0029 (8) 0.0048 (8) 0.0017 (8)
O6A 0.0701 (17) 0.0199 (11) 0.0339 (12) −0.0224 (11) 0.0051 (12) −0.0043 (9)
N1A 0.0234 (11) 0.0084 (10) 0.0156 (10) −0.0035 (8) 0.0041 (9) −0.0013 (8)
N2A 0.0208 (11) 0.0089 (10) 0.0200 (10) −0.0020 (8) 0.0072 (9) −0.0017 (8)
N3A 0.0182 (10) 0.0132 (11) 0.0187 (10) −0.0030 (8) 0.0051 (9) −0.0032 (8)
N4A 0.0231 (11) 0.0165 (11) 0.0199 (11) 0.0023 (9) 0.0062 (10) 0.0015 (9)
N5A 0.0299 (13) 0.0203 (12) 0.0221 (11) −0.0089 (10) 0.0111 (10) −0.0029 (9)
C1A 0.0174 (12) 0.0113 (11) 0.0168 (11) 0.0008 (9) 0.0074 (10) −0.0015 (9)
C2A 0.0149 (11) 0.0123 (12) 0.0156 (11) −0.0025 (9) 0.0044 (10) −0.0023 (9)
C3A 0.0190 (12) 0.0093 (11) 0.0226 (12) −0.0013 (9) 0.0094 (11) −0.0002 (9)
C4A 0.0187 (12) 0.0148 (12) 0.0176 (11) 0.0028 (9) 0.0081 (10) 0.0034 (9)
C5A 0.0172 (12) 0.0167 (13) 0.0181 (12) −0.0025 (10) 0.0070 (10) −0.0031 (9)
C6A 0.0190 (12) 0.0130 (12) 0.0196 (12) −0.0033 (9) 0.0075 (10) −0.0045 (9)
C7A 0.0178 (12) 0.0122 (12) 0.0178 (11) −0.0015 (9) 0.0063 (10) −0.0006 (9)
C8A 0.0184 (12) 0.0119 (12) 0.0185 (12) 0.0003 (9) 0.0086 (10) 0.0009 (9)
C9A 0.0212 (12) 0.0123 (12) 0.0174 (11) −0.0008 (9) 0.0082 (10) −0.0003 (9)
C10A 0.0226 (13) 0.0166 (13) 0.0190 (12) −0.0051 (10) 0.0093 (11) −0.0041 (10)
C11A 0.0289 (14) 0.0109 (12) 0.0270 (14) −0.0014 (10) 0.0128 (12) 0.0016 (10)
C12A 0.0244 (13) 0.0147 (13) 0.0249 (13) 0.0023 (10) 0.0088 (12) 0.0080 (10)
C13A 0.0181 (12) 0.0168 (13) 0.0194 (12) 0.0001 (10) 0.0056 (10) 0.0015 (10)
C14A 0.0379 (16) 0.0167 (14) 0.0196 (13) −0.0032 (12) 0.0052 (12) −0.0002 (10)
O1B 0.0257 (10) 0.0190 (10) 0.0227 (9) −0.0029 (8) 0.0000 (8) 0.0006 (8)
O2B 0.0398 (12) 0.0102 (9) 0.0266 (10) 0.0045 (8) 0.0110 (9) 0.0042 (7)
O3B 0.0775 (19) 0.0186 (12) 0.0493 (15) 0.0105 (12) −0.0220 (14) −0.0143 (11)
O4B 0.0345 (12) 0.0299 (12) 0.0223 (10) −0.0046 (9) −0.0010 (9) −0.0023 (8)
O5B 0.0237 (10) 0.0202 (10) 0.0220 (9) 0.0008 (8) 0.0050 (8) −0.0036 (8)
O6B 0.0378 (12) 0.0190 (10) 0.0285 (10) 0.0022 (9) 0.0070 (9) 0.0090 (8)
N1B 0.0247 (11) 0.0118 (10) 0.0159 (10) −0.0002 (8) 0.0042 (9) 0.0012 (8)
N2B 0.0228 (11) 0.0123 (10) 0.0199 (10) 0.0007 (8) 0.0070 (9) 0.0012 (8)
N3B 0.0234 (11) 0.0143 (11) 0.0212 (11) 0.0017 (9) 0.0090 (10) 0.0008 (8)
N4B 0.0267 (12) 0.0207 (13) 0.0248 (12) −0.0014 (10) 0.0039 (10) −0.0042 (9)
N5B 0.0248 (11) 0.0169 (11) 0.0202 (11) 0.0031 (9) 0.0078 (10) −0.0008 (9)
C1B 0.0202 (12) 0.0146 (12) 0.0194 (12) −0.0002 (10) 0.0092 (10) −0.0001 (10)
C2B 0.0179 (12) 0.0140 (12) 0.0175 (11) 0.0010 (9) 0.0068 (10) 0.0008 (9)
C3B 0.0201 (13) 0.0119 (12) 0.0236 (13) −0.0002 (10) 0.0079 (11) −0.0020 (10)
C4B 0.0185 (12) 0.0169 (13) 0.0204 (12) −0.0024 (10) 0.0063 (11) −0.0058 (10)
C5B 0.0193 (12) 0.0209 (13) 0.0169 (12) 0.0023 (10) 0.0069 (10) 0.0022 (10)
C6B 0.0217 (13) 0.0153 (13) 0.0178 (12) 0.0034 (10) 0.0071 (11) 0.0026 (9)
C7B 0.0205 (12) 0.0113 (12) 0.0181 (12) 0.0010 (9) 0.0076 (10) 0.0001 (9)
C8B 0.0191 (12) 0.0130 (12) 0.0165 (11) −0.0008 (9) 0.0071 (10) −0.0017 (9)
C9B 0.0177 (12) 0.0154 (12) 0.0172 (11) −0.0006 (9) 0.0068 (10) −0.0022 (9)
C10B 0.0186 (12) 0.0155 (12) 0.0149 (11) 0.0038 (9) 0.0057 (10) 0.0025 (9)
C11B 0.0247 (13) 0.0114 (12) 0.0228 (13) 0.0010 (10) 0.0103 (11) 0.0001 (10)
C12B 0.0235 (13) 0.0139 (12) 0.0207 (12) −0.0048 (10) 0.0079 (11) −0.0062 (10)
C13B 0.0194 (12) 0.0169 (13) 0.0169 (11) −0.0005 (10) 0.0050 (10) −0.0020 (9)
C14B 0.0379 (16) 0.0157 (13) 0.0198 (13) 0.0033 (12) 0.0067 (12) −0.0006 (10)
O1C 0.0319 (11) 0.0156 (10) 0.0234 (10) −0.0011 (8) 0.0004 (9) 0.0041 (8)
O2C 0.0362 (11) 0.0106 (9) 0.0299 (10) −0.0063 (8) 0.0024 (9) −0.0026 (8)
O3C 0.0300 (11) 0.0185 (10) 0.0316 (11) −0.0023 (8) 0.0088 (9) 0.0074 (8)
O4C 0.0213 (10) 0.0264 (11) 0.0211 (9) 0.0031 (8) 0.0010 (8) 0.0028 (8)
O5C 0.0267 (10) 0.0303 (11) 0.0234 (10) −0.0038 (9) 0.0032 (9) −0.0006 (8)
O6C 0.0383 (12) 0.0194 (11) 0.0402 (12) −0.0093 (9) 0.0064 (10) −0.0093 (9)
N1C 0.0215 (11) 0.0100 (10) 0.0162 (10) −0.0016 (8) 0.0035 (9) −0.0005 (8)
N2C 0.0199 (11) 0.0096 (10) 0.0212 (10) −0.0013 (8) 0.0084 (9) −0.0019 (8)
N3C 0.0195 (11) 0.0153 (11) 0.0211 (11) −0.0016 (9) 0.0050 (9) −0.0014 (9)
N4C 0.0214 (11) 0.0160 (11) 0.0179 (10) 0.0026 (9) 0.0061 (9) 0.0019 (8)
N5C 0.0213 (11) 0.0214 (12) 0.0235 (11) −0.0028 (9) 0.0084 (10) −0.0058 (9)
C1C 0.0197 (12) 0.0114 (12) 0.0190 (12) 0.0000 (9) 0.0096 (10) −0.0004 (9)
C2C 0.0188 (12) 0.0109 (12) 0.0170 (11) −0.0006 (9) 0.0041 (10) −0.0007 (9)
C3C 0.0203 (12) 0.0099 (12) 0.0222 (12) −0.0004 (9) 0.0090 (11) −0.0013 (9)
C4C 0.0185 (12) 0.0155 (12) 0.0185 (12) 0.0026 (10) 0.0073 (10) 0.0039 (9)
C5C 0.0201 (12) 0.0158 (13) 0.0178 (12) −0.0025 (10) 0.0068 (10) −0.0012 (9)
C6C 0.0227 (13) 0.0128 (12) 0.0197 (12) −0.0041 (10) 0.0084 (11) −0.0022 (9)
C7C 0.0156 (11) 0.0097 (11) 0.0197 (12) −0.0006 (9) 0.0061 (10) −0.0005 (9)
C8C 0.0163 (12) 0.0143 (12) 0.0176 (11) 0.0007 (9) 0.0078 (10) 0.0007 (9)
C9C 0.0170 (12) 0.0139 (12) 0.0165 (11) 0.0021 (9) 0.0048 (10) 0.0011 (9)
C10C 0.0157 (12) 0.0184 (13) 0.0208 (12) −0.0013 (10) 0.0063 (10) −0.0045 (10)
C11C 0.0231 (13) 0.0113 (12) 0.0317 (14) −0.0014 (10) 0.0137 (12) −0.0002 (10)
C12C 0.0244 (13) 0.0183 (13) 0.0239 (13) 0.0039 (11) 0.0097 (11) 0.0073 (10)
C13C 0.0186 (12) 0.0163 (13) 0.0184 (12) 0.0005 (10) 0.0061 (10) 0.0007 (10)
C14C 0.0243 (13) 0.0148 (13) 0.0183 (12) −0.0034 (10) 0.0027 (11) −0.0001 (10)

Geometric parameters (Å, º)

O1A—N3A 1.240 (3) C5B—C6B 1.373 (3)
O2A—N3A 1.229 (3) C5B—H5BA 0.9500
O3A—N4A 1.231 (3) C6B—H6BA 0.9500
O4A—N4A 1.234 (3) C7B—C8B 1.483 (3)
O5A—N5A 1.226 (3) C7B—C14B 1.500 (3)
O6A—N5A 1.222 (3) C8B—C9B 1.396 (3)
N1A—C1A 1.360 (3) C8B—C13B 1.399 (3)
N1A—N2A 1.375 (3) C9B—C10B 1.385 (3)
N1A—H1AA 0.8800 C9B—H9BA 0.9500
N2A—C7A 1.291 (3) C10B—C11B 1.381 (3)
N3A—C2A 1.450 (3) C11B—C12B 1.381 (4)
N4A—C4A 1.459 (3) C11B—H11B 0.9500
N5A—C10A 1.476 (3) C12B—C13B 1.395 (3)
C1A—C6A 1.419 (3) C12B—H12B 0.9500
C1A—C2A 1.420 (3) C13B—H13B 0.9500
C2A—C3A 1.392 (3) C14B—H14D 0.9800
C3A—C4A 1.370 (3) C14B—H14E 0.9800
C3A—H3AA 0.9500 C14B—H14F 0.9800
C4A—C5A 1.402 (3) O1C—N3C 1.240 (3)
C5A—C6A 1.370 (3) O2C—N3C 1.230 (3)
C5A—H5AA 0.9500 O3C—N4C 1.228 (3)
C6A—H6AA 0.9500 O4C—N4C 1.230 (3)
C7A—C8A 1.486 (3) O5C—N5C 1.231 (3)
C7A—C14A 1.500 (3) O6C—N5C 1.231 (3)
C8A—C13A 1.398 (3) N1C—C1C 1.358 (3)
C8A—C9A 1.400 (3) N1C—N2C 1.377 (3)
C9A—C10A 1.387 (3) N1C—H1CA 0.8800
C9A—H9AA 0.9500 N2C—C7C 1.293 (3)
C10A—C11A 1.382 (3) N3C—C2C 1.449 (3)
C11A—C12A 1.377 (4) N4C—C4C 1.462 (3)
C11A—H11A 0.9500 N5C—C10C 1.479 (3)
C12A—C13A 1.391 (3) C1C—C2C 1.420 (3)
C12A—H12A 0.9500 C1C—C6C 1.423 (3)
C13A—H13A 0.9500 C2C—C3C 1.390 (3)
C14A—H14A 0.9800 C3C—C4C 1.369 (3)
C14A—H14B 0.9800 C3C—H3CA 0.9500
C14A—H14C 0.9800 C4C—C5C 1.405 (3)
O1B—N3B 1.240 (3) C5C—C6C 1.370 (3)
O2B—N3B 1.230 (3) C5C—H5CA 0.9500
O3B—N4B 1.217 (3) C6C—H6CA 0.9500
O4B—N4B 1.220 (3) C7C—C8C 1.486 (3)
O5B—N5B 1.239 (3) C7C—C14C 1.503 (3)
O6B—N5B 1.227 (3) C8C—C9C 1.399 (3)
N1B—C1B 1.362 (3) C8C—C13C 1.403 (3)
N1B—N2B 1.375 (3) C9C—C10C 1.386 (3)
N1B—H1BA 0.8800 C9C—H9CA 0.9500
N2B—C7B 1.294 (3) C10C—C11C 1.384 (4)
N3B—C2B 1.456 (3) C11C—C12C 1.380 (4)
N4B—C4B 1.464 (3) C11C—H11C 0.9500
N5B—C10B 1.475 (3) C12C—C13C 1.389 (3)
C1B—C6B 1.415 (3) C12C—H12C 0.9500
C1B—C2B 1.423 (3) C13C—H13C 0.9500
C2B—C3B 1.386 (3) C14C—H14G 0.9800
C3B—C4B 1.364 (3) C14C—H14H 0.9800
C3B—H3BA 0.9500 C14C—H14J 0.9800
C4B—C5B 1.404 (3)
C1A—N1A—N2A 118.9 (2) C5B—C6B—H6BA 119.2
C1A—N1A—H1AA 120.5 C1B—C6B—H6BA 119.2
N2A—N1A—H1AA 120.5 N2B—C7B—C8B 114.5 (2)
C7A—N2A—N1A 117.0 (2) N2B—C7B—C14B 125.3 (2)
O2A—N3A—O1A 122.1 (2) C8B—C7B—C14B 120.2 (2)
O2A—N3A—C2A 118.8 (2) C9B—C8B—C13B 119.2 (2)
O1A—N3A—C2A 119.1 (2) C9B—C8B—C7B 119.8 (2)
O3A—N4A—O4A 123.7 (2) C13B—C8B—C7B 120.9 (2)
O3A—N4A—C4A 118.4 (2) C10B—C9B—C8B 118.5 (2)
O4A—N4A—C4A 117.9 (2) C10B—C9B—H9BA 120.8
O6A—N5A—O5A 123.2 (2) C8B—C9B—H9BA 120.8
O6A—N5A—C10A 118.1 (2) C11B—C10B—C9B 123.4 (2)
O5A—N5A—C10A 118.7 (2) C11B—C10B—N5B 118.3 (2)
N1A—C1A—C6A 120.0 (2) C9B—C10B—N5B 118.3 (2)
N1A—C1A—C2A 123.1 (2) C10B—C11B—C12B 117.7 (2)
C6A—C1A—C2A 116.9 (2) C10B—C11B—H11B 121.1
C3A—C2A—C1A 121.7 (2) C12B—C11B—H11B 121.1
C3A—C2A—N3A 116.2 (2) C11B—C12B—C13B 120.9 (2)
C1A—C2A—N3A 122.1 (2) C11B—C12B—H12B 119.6
C4A—C3A—C2A 118.7 (2) C13B—C12B—H12B 119.6
C4A—C3A—H3AA 120.7 C12B—C13B—C8B 120.3 (2)
C2A—C3A—H3AA 120.7 C12B—C13B—H13B 119.8
C3A—C4A—C5A 121.9 (2) C8B—C13B—H13B 119.8
C3A—C4A—N4A 118.5 (2) C7B—C14B—H14D 109.5
C5A—C4A—N4A 119.5 (2) C7B—C14B—H14E 109.5
C6A—C5A—C4A 119.2 (2) H14D—C14B—H14E 109.5
C6A—C5A—H5AA 120.4 C7B—C14B—H14F 109.5
C4A—C5A—H5AA 120.4 H14D—C14B—H14F 109.5
C5A—C6A—C1A 121.5 (2) H14E—C14B—H14F 109.5
C5A—C6A—H6AA 119.2 C1C—N1C—N2C 119.8 (2)
C1A—C6A—H6AA 119.2 C1C—N1C—H1CA 120.1
N2A—C7A—C8A 115.2 (2) N2C—N1C—H1CA 120.1
N2A—C7A—C14A 125.4 (2) C7C—N2C—N1C 116.2 (2)
C8A—C7A—C14A 119.4 (2) O2C—N3C—O1C 122.3 (2)
C13A—C8A—C9A 119.0 (2) O2C—N3C—C2C 118.5 (2)
C13A—C8A—C7A 121.4 (2) O1C—N3C—C2C 119.3 (2)
C9A—C8A—C7A 119.6 (2) O3C—N4C—O4C 124.0 (2)
C10A—C9A—C8A 118.3 (2) O3C—N4C—C4C 118.3 (2)
C10A—C9A—H9AA 120.9 O4C—N4C—C4C 117.7 (2)
C8A—C9A—H9AA 120.9 O5C—N5C—O6C 123.7 (2)
C11A—C10A—C9A 123.1 (2) O5C—N5C—C10C 118.3 (2)
C11A—C10A—N5A 118.7 (2) O6C—N5C—C10C 118.0 (2)
C9A—C10A—N5A 118.2 (2) N1C—C1C—C2C 122.5 (2)
C12A—C11A—C10A 118.3 (2) N1C—C1C—C6C 120.3 (2)
C12A—C11A—H11A 120.9 C2C—C1C—C6C 117.1 (2)
C10A—C11A—H11A 120.9 C3C—C2C—C1C 121.4 (2)
C11A—C12A—C13A 120.4 (2) C3C—C2C—N3C 116.2 (2)
C11A—C12A—H12A 119.8 C1C—C2C—N3C 122.4 (2)
C13A—C12A—H12A 119.8 C4C—C3C—C2C 119.0 (2)
C12A—C13A—C8A 120.9 (2) C4C—C3C—H3CA 120.5
C12A—C13A—H13A 119.6 C2C—C3C—H3CA 120.5
C8A—C13A—H13A 119.6 C3C—C4C—C5C 121.9 (2)
C7A—C14A—H14A 109.5 C3C—C4C—N4C 118.7 (2)
C7A—C14A—H14B 109.5 C5C—C4C—N4C 119.5 (2)
H14A—C14A—H14B 109.5 C6C—C5C—C4C 119.1 (2)
C7A—C14A—H14C 109.5 C6C—C5C—H5CA 120.5
H14A—C14A—H14C 109.5 C4C—C5C—H5CA 120.5
H14B—C14A—H14C 109.5 C5C—C6C—C1C 121.4 (2)
C1B—N1B—N2B 118.5 (2) C5C—C6C—H6CA 119.3
C1B—N1B—H1BA 120.7 C1C—C6C—H6CA 119.3
N2B—N1B—H1BA 120.7 N2C—C7C—C8C 115.7 (2)
C7B—N2B—N1B 116.9 (2) N2C—C7C—C14C 125.0 (2)
O2B—N3B—O1B 123.1 (2) C8C—C7C—C14C 119.3 (2)
O2B—N3B—C2B 118.1 (2) C9C—C8C—C13C 119.0 (2)
O1B—N3B—C2B 118.9 (2) C9C—C8C—C7C 120.3 (2)
O3B—N4B—O4B 123.2 (2) C13C—C8C—C7C 120.7 (2)
O3B—N4B—C4B 118.1 (2) C10C—C9C—C8C 118.3 (2)
O4B—N4B—C4B 118.7 (2) C10C—C9C—H9CA 120.8
O6B—N5B—O5B 123.4 (2) C8C—C9C—H9CA 120.8
O6B—N5B—C10B 118.3 (2) C11C—C10C—C9C 123.3 (2)
O5B—N5B—C10B 118.3 (2) C11C—C10C—N5C 118.1 (2)
N1B—C1B—C6B 120.6 (2) C9C—C10C—N5C 118.6 (2)
N1B—C1B—C2B 122.4 (2) C12C—C11C—C10C 117.8 (2)
C6B—C1B—C2B 117.0 (2) C12C—C11C—H11C 121.1
C3B—C2B—C1B 121.3 (2) C10C—C11C—H11C 121.1
C3B—C2B—N3B 116.4 (2) C11C—C12C—C13C 120.8 (2)
C1B—C2B—N3B 122.3 (2) C11C—C12C—H12C 119.6
C4B—C3B—C2B 119.4 (2) C13C—C12C—H12C 119.6
C4B—C3B—H3BA 120.3 C12C—C13C—C8C 120.7 (2)
C2B—C3B—H3BA 120.3 C12C—C13C—H13C 119.6
C3B—C4B—C5B 121.7 (2) C8C—C13C—H13C 119.6
C3B—C4B—N4B 118.8 (2) C7C—C14C—H14G 109.5
C5B—C4B—N4B 119.5 (2) C7C—C14C—H14H 109.5
C6B—C5B—C4B 119.0 (2) H14G—C14C—H14H 109.5
C6B—C5B—H5BA 120.5 C7C—C14C—H14J 109.5
C4B—C5B—H5BA 120.5 H14G—C14C—H14J 109.5
C5B—C6B—C1B 121.5 (2) H14H—C14C—H14J 109.5
C1A—N1A—N2A—C7A −171.6 (2) N1B—C1B—C6B—C5B −177.7 (2)
N2A—N1A—C1A—C6A 4.3 (3) C2B—C1B—C6B—C5B 0.0 (3)
N2A—N1A—C1A—C2A −177.5 (2) N1B—N2B—C7B—C8B 177.9 (2)
N1A—C1A—C2A—C3A 179.3 (2) N1B—N2B—C7B—C14B −3.1 (4)
C6A—C1A—C2A—C3A −2.5 (3) N2B—C7B—C8B—C9B 19.2 (3)
N1A—C1A—C2A—N3A −1.2 (3) C14B—C7B—C8B—C9B −159.9 (2)
C6A—C1A—C2A—N3A 177.0 (2) N2B—C7B—C8B—C13B −160.4 (2)
O2A—N3A—C2A—C3A 0.1 (3) C14B—C7B—C8B—C13B 20.6 (3)
O1A—N3A—C2A—C3A 178.9 (2) C13B—C8B—C9B—C10B 1.0 (3)
O2A—N3A—C2A—C1A −179.4 (2) C7B—C8B—C9B—C10B −178.5 (2)
O1A—N3A—C2A—C1A −0.6 (3) C8B—C9B—C10B—C11B 0.5 (4)
C1A—C2A—C3A—C4A 2.8 (3) C8B—C9B—C10B—N5B −177.8 (2)
N3A—C2A—C3A—C4A −176.7 (2) O6B—N5B—C10B—C11B 12.8 (3)
C2A—C3A—C4A—C5A −0.4 (4) O5B—N5B—C10B—C11B −166.1 (2)
C2A—C3A—C4A—N4A 179.9 (2) O6B—N5B—C10B—C9B −168.8 (2)
O3A—N4A—C4A—C3A 19.8 (3) O5B—N5B—C10B—C9B 12.3 (3)
O4A—N4A—C4A—C3A −160.9 (2) C9B—C10B—C11B—C12B −1.1 (4)
O3A—N4A—C4A—C5A −159.9 (2) N5B—C10B—C11B—C12B 177.2 (2)
O4A—N4A—C4A—C5A 19.4 (3) C10B—C11B—C12B—C13B 0.2 (4)
C3A—C4A—C5A—C6A −2.3 (4) C11B—C12B—C13B—C8B 1.3 (4)
N4A—C4A—C5A—C6A 177.4 (2) C9B—C8B—C13B—C12B −1.9 (3)
C4A—C5A—C6A—C1A 2.6 (4) C7B—C8B—C13B—C12B 177.6 (2)
N1A—C1A—C6A—C5A 178.0 (2) C1C—N1C—N2C—C7C 170.1 (2)
C2A—C1A—C6A—C5A −0.2 (3) N2C—N1C—C1C—C2C −176.7 (2)
N1A—N2A—C7A—C8A −177.61 (19) N2C—N1C—C1C—C6C 1.4 (3)
N1A—N2A—C7A—C14A 2.6 (4) N1C—C1C—C2C—C3C 179.7 (2)
N2A—C7A—C8A—C13A 161.1 (2) C6C—C1C—C2C—C3C 1.5 (3)
C14A—C7A—C8A—C13A −19.1 (3) N1C—C1C—C2C—N3C 0.2 (4)
N2A—C7A—C8A—C9A −19.5 (3) C6C—C1C—C2C—N3C −178.0 (2)
C14A—C7A—C8A—C9A 160.3 (2) O2C—N3C—C2C—C3C −3.3 (3)
C13A—C8A—C9A—C10A −0.1 (3) O1C—N3C—C2C—C3C 177.1 (2)
C7A—C8A—C9A—C10A −179.6 (2) O2C—N3C—C2C—C1C 176.2 (2)
C8A—C9A—C10A—C11A −2.0 (4) O1C—N3C—C2C—C1C −3.4 (3)
C8A—C9A—C10A—N5A 176.1 (2) C1C—C2C—C3C—C4C −3.0 (4)
O6A—N5A—C10A—C11A −1.2 (4) N3C—C2C—C3C—C4C 176.5 (2)
O5A—N5A—C10A—C11A 176.2 (2) C2C—C3C—C4C—C5C 1.7 (4)
O6A—N5A—C10A—C9A −179.3 (2) C2C—C3C—C4C—N4C −177.7 (2)
O5A—N5A—C10A—C9A −1.9 (3) O3C—N4C—C4C—C3C −21.0 (3)
C9A—C10A—C11A—C12A 2.0 (4) O4C—N4C—C4C—C3C 159.4 (2)
N5A—C10A—C11A—C12A −176.0 (2) O3C—N4C—C4C—C5C 159.5 (2)
C10A—C11A—C12A—C13A 0.0 (4) O4C—N4C—C4C—C5C −20.1 (3)
C11A—C12A—C13A—C8A −2.0 (4) C3C—C4C—C5C—C6C 1.1 (4)
C9A—C8A—C13A—C12A 2.1 (4) N4C—C4C—C5C—C6C −179.4 (2)
C7A—C8A—C13A—C12A −178.5 (2) C4C—C5C—C6C—C1C −2.7 (4)
C1B—N1B—N2B—C7B 170.5 (2) N1C—C1C—C6C—C5C −176.8 (2)
N2B—N1B—C1B—C6B −0.9 (3) C2C—C1C—C6C—C5C 1.4 (3)
N2B—N1B—C1B—C2B −178.5 (2) N1C—N2C—C7C—C8C 178.35 (19)
N1B—C1B—C2B—C3B 178.2 (2) N1C—N2C—C7C—C14C −2.1 (3)
C6B—C1B—C2B—C3B 0.5 (3) N2C—C7C—C8C—C9C 11.8 (3)
N1B—C1B—C2B—N3B −1.1 (4) C14C—C7C—C8C—C9C −167.8 (2)
C6B—C1B—C2B—N3B −178.8 (2) N2C—C7C—C8C—C13C −168.6 (2)
O2B—N3B—C2B—C3B −12.4 (3) C14C—C7C—C8C—C13C 11.9 (3)
O1B—N3B—C2B—C3B 167.4 (2) C13C—C8C—C9C—C10C −1.0 (3)
O2B—N3B—C2B—C1B 167.0 (2) C7C—C8C—C9C—C10C 178.7 (2)
O1B—N3B—C2B—C1B −13.2 (3) C8C—C9C—C10C—C11C 1.5 (4)
C1B—C2B—C3B—C4B −0.1 (4) C8C—C9C—C10C—N5C −176.7 (2)
N3B—C2B—C3B—C4B 179.2 (2) O5C—N5C—C10C—C11C −175.2 (2)
C2B—C3B—C4B—C5B −0.8 (4) O6C—N5C—C10C—C11C 3.1 (3)
C2B—C3B—C4B—N4B 178.4 (2) O5C—N5C—C10C—C9C 3.1 (3)
O3B—N4B—C4B—C3B −9.8 (4) O6C—N5C—C10C—C9C −178.5 (2)
O4B—N4B—C4B—C3B 170.6 (2) C9C—C10C—C11C—C12C −0.7 (4)
O3B—N4B—C4B—C5B 169.4 (3) N5C—C10C—C11C—C12C 177.5 (2)
O4B—N4B—C4B—C5B −10.2 (4) C10C—C11C—C12C—C13C −0.6 (4)
C3B—C4B—C5B—C6B 1.3 (4) C11C—C12C—C13C—C8C 1.1 (4)
N4B—C4B—C5B—C6B −177.9 (2) C9C—C8C—C13C—C12C −0.3 (3)
C4B—C5B—C6B—C1B −0.9 (4) C7C—C8C—C13C—C12C −179.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1AA···O1A 0.88 1.98 2.615 (3) 128
N1B—H1BA···O1B 0.88 2.01 2.637 (3) 127
N1C—H1CA···O1C 0.88 1.98 2.617 (3) 129
C3A—H3AA···O2Ai 0.95 2.44 3.320 (3) 154
C3B—H3BA···O2Cii 0.95 2.40 3.188 (3) 140
C3C—H3CA···O2Biii 0.95 2.52 3.413 (3) 156
C14B—H14F···O4Aiv 0.98 2.53 3.316 (4) 137
C14C—H14J···O4Ciii 0.98 2.54 3.253 (4) 129

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x+1, −y+3/2, z+1/2; (iii) x−1, −y+3/2, z−1/2; (iv) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5180).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chantrapromma, S., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Fun, H.-K. (2011). Acta Cryst. E67, o3499–o3500. [DOI] [PMC free article] [PubMed]
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Cui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576–5584. [DOI] [PubMed]
  7. Krishnamoorthy, P., Sathyadevi, P., Senthikumar, K., Muthiah, T., Ramesh, R. & Dharmaraj, N. (2011). Inorg. Chem. Commun. 14, 1318–1322.
  8. Molyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211–219.
  9. Raja, D. S., Bhuvanesh, N. S. P. & Natarajan, K. (2012). Eur. J. Med. Chem. 47, 73–85. [DOI] [PubMed]
  10. Sathyadevi, P., Krishnamoorthy, P., Alagesan, M., Thanigaimani, K. & Muthiah, P. T. (2012). Polyhedron, 31, 294–306.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812034812/is5180sup1.cif

e-68-o2684-sup1.cif (51.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034812/is5180Isup2.hkl

e-68-o2684-Isup2.hkl (609.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812034812/is5180Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES