Abstract
The primary structure of tRNALys of E. coli was determined by use of [32P]-tRNA. The sequence is pGGGUCGUUAGCUCAGDDGGDAGAGCAGUUGACUmam5-s2-UUU-t6AApsiCAAUUGm7GXCGCAGGTpsiCGAAUCCUGCACGACCCACCA. No s4-U was detected in position 8. No other lysine tRNA was detected but the existence of another species has not been ruled out.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Gillam I., Blew D., Warrington R. C., von Tigerstrom M., Tener G. M. A general procedure for the isolation of specific transfer ribonucleic acids. Biochemistry. 1968 Oct;7(10):3459–3468. doi: 10.1021/bi00850a022. [DOI] [PubMed] [Google Scholar]
- HOLLEY R. W., APGAR J., EVERETT G. A., MADISON J. T., MARQUISEE M., MERRILL S. H., PENSWICK J. R., ZAMIR A. STRUCTURE OF A RIBONUCLEIC ACID. Science. 1965 Mar 19;147(3664):1462–1465. doi: 10.1126/science.147.3664.1462. [DOI] [PubMed] [Google Scholar]
- Ishikura H., Yamada Y., Murao K., Saneyoshi M., Nishimura S. The presence of N-[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]threonine in serine, methionine and lysine transfer RNA's from Escherichia coli. Biochem Biophys Res Commun. 1969 Dec 4;37(6):990–995. doi: 10.1016/0006-291x(69)90229-0. [DOI] [PubMed] [Google Scholar]
- Madison J. T., Boguslawski S. J., Teetor G. H. Nucleotide sequence of a lysine transfer ribonucleic Acid from bakers' yeast. Science. 1972 May 12;176(4035):687–689. doi: 10.1126/science.176.4035.687. [DOI] [PubMed] [Google Scholar]
- Mehler A. H., Chakraburtty K. Some questions about the structure and activity of aminoacyl-tRNA synthetases. Adv Enzymol Relat Areas Mol Biol. 1971;35:443–501. doi: 10.1002/9780470122808.ch8. [DOI] [PubMed] [Google Scholar]
- Nishimura S. Minor components in transfer RNA: their characterization, location, and function. Prog Nucleic Acid Res Mol Biol. 1972;12:49–85. [PubMed] [Google Scholar]
- Oashi Z., Saneyoshi M., Harada F., Hara H., Nishimura S. Presumed anticodon structure of glutamic acid tRNA from E. coli: a possible location of a 2-thiouridine derivative in the first position of the anticodon. Biochem Biophys Res Commun. 1970 Aug 24;40(4):866–872. doi: 10.1016/0006-291x(70)90983-6. [DOI] [PubMed] [Google Scholar]
- Remy P., Birmelé C., Ebel J. P. Purification of yeast phenylalanyl-tRNA synthetase by affinity chromatography, on a tRNA(Phe)-sepharose column. FEBS Lett. 1972 Oct 15;27(1):134–138. doi: 10.1016/0014-5793(72)80426-5. [DOI] [PubMed] [Google Scholar]
- Smith C. J., Ley A. N., D'Obrenan P., Mitra S. K. The structure and coding specificity of a lysine transfer ribonucleic acid from the haploid yeast Saccharomyces cerevisiae alpha S288C. J Biol Chem. 1971 Dec 25;246(24):7817–7819. [PubMed] [Google Scholar]
- Steinschneider A. Thermal chromatography of lysine-specific transfer ribonucleic acid from Escherichia coli B. J Chromatogr. 1975 Jan 22;103(2):355–363. doi: 10.1016/s0021-9673(00)87227-1. [DOI] [PubMed] [Google Scholar]
- Stern R., Mehler A. H. Lysyl-sRNA synthetase from Escherichia coli. Biochem Z. 1965 Aug 19;342(4):400–409. [PubMed] [Google Scholar]
- TOMLINSON R. V., TENER G. M. THE EFFECT OF UREA, FORMAMIDE, AND GLYCOLS ON THE SECONDARY BINDING FORCES IN THE ION-EXCHANGE CHROMATOGRAPHY OF POLYNUCLEOTIDES OF DEAE-CELLULOSE. Biochemistry. 1963 Jul-Aug;2:697–702. doi: 10.1021/bi00904a013. [DOI] [PubMed] [Google Scholar]

