Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 15;68(Pt 9):o2727. doi: 10.1107/S1600536812035039

(Z)-2-(5-Acetyl-4-methyl-3-phenyl-2,3-dihydro-1,3-thia­zol-2-yl­idene)-3-(3-methyl-1-benzofuran-2-yl)-3-oxo­propane­nitrile

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Hatem A Abdel-Aziz b, Hazem A Ghabbour b
PMCID: PMC3435740  PMID: 22969611

Abstract

In the title compound, C24H18N2O3S, the benzofuran ring system (r.m.s. deviation = 0.010 Å) forms dihedral angles of 83.13 (17) and 8.92 (14)° with the benzene and thia­zole rings, respectively. The dihedral angle between the benzene and thia­zole rings is 84.51 (19)°. The mol­ecular structure features an intra­molecular C—H⋯O hydrogen bond, which closes an S(6) ring. There are no inter­molecular hydrogen bonds observed in this structure.

Related literature  

For background to and the biological activity of benzofuran derivatives, see: Abdel-Aziz et al. (2009); Abdel-Wahab et al. (2009). For further synthetic details, see: Dawood et al. (2005). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2012); Abdel-Aziz et al. (2012).graphic file with name e-68-o2727-scheme1.jpg

Experimental  

Crystal data  

  • C24H18N2O3S

  • M r = 414.46

  • Monoclinic, Inline graphic

  • a = 9.7836 (4) Å

  • b = 6.3682 (3) Å

  • c = 16.2330 (6) Å

  • β = 100.351 (3)°

  • V = 994.92 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.69 mm−1

  • T = 296 K

  • 0.92 × 0.09 × 0.06 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.306, T max = 0.906

  • 7151 measured reflections

  • 2831 independent reflections

  • 2310 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.119

  • S = 1.01

  • 2831 reflections

  • 275 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983), 831 Friedel pairs

  • Flack parameter: 0.03 (3)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL ; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035039/hb6913sup1.cif

e-68-o2727-sup1.cif (28.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035039/hb6913Isup2.hkl

e-68-o2727-Isup2.hkl (139KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812035039/hb6913Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O3 0.96 2.30 2.999 (5) 129

Acknowledgments

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

In continuation of our interest in the structures and properties of benzofuran derivatives (Abdel-Aziz et al., 2009; Abdel-Wahab et al., 2009), we publish here the crystal structure of the title compound.

In the title molecule, Fig. 1, the benzofuran-2-yl ring system (O1/C1-C8, r.m.s. deviation = 0.010 Å) forms dihedral angles of 83.13 (17) and 8.92 (14)° with the benzene (C18-C23) and thiazol (S1/N1/C11-C13) rings, respectively. The dihedral angle between benzene and thiazol rings is 84.51 (19)°. Bond lengths and angles are comparable to related structures (Fun et al., 2012; Abdel-Aziz et al., 2012). The crystal structure is features an intramolecular C14–H14A···O3 hydrogen bond, forming an S(6) ring motif (Bernstein et al., 1995).

There is no significant intermolecular hydrogen bond observed in this compound.

Experimental

To a solution of 2-cyano-2-(3-methylbenzofuran-2-carbonyl)thioacetanilide (Dawood et al., 2005), (0.33 g, 1 mmol) in ethanol (25 mL) and 3-chloropentane-2,4-dione (0.135 g, 1 mmol), triethylamine (0.2 mL) was added. The mixture was refluxed for 2 h, and then allowed to cool. The formed solid was filtered off, washed with ethanol, and recrystallized from EtOH/DMF solution to afford yellow needles of the title compound.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dashed line.

Crystal data

C24H18N2O3S F(000) = 432
Mr = 414.46 Dx = 1.383 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2yb Cell parameters from 1283 reflections
a = 9.7836 (4) Å θ = 2.8–65.0°
b = 6.3682 (3) Å µ = 1.69 mm1
c = 16.2330 (6) Å T = 296 K
β = 100.351 (3)° Needle, yellow
V = 994.92 (7) Å3 0.92 × 0.09 × 0.06 mm
Z = 2

Data collection

Bruker SMART APEXII CCD diffractometer 2831 independent reflections
Radiation source: fine-focus sealed tube 2310 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 69.8°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.306, Tmax = 0.906 k = −6→7
7151 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0714P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
2831 reflections Δρmax = 0.25 e Å3
275 parameters Δρmin = −0.32 e Å3
1 restraint Absolute structure: Flack (1983), 831 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.03 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.23468 (9) 0.89038 (14) 0.13562 (4) 0.0454 (2)
N1 0.1798 (2) 0.8805 (5) 0.28286 (14) 0.0386 (6)
N2 0.3568 (3) 0.4048 (7) 0.39528 (18) 0.0667 (9)
O1 0.4965 (2) 0.1891 (4) 0.26849 (14) 0.0482 (6)
O2 0.3871 (3) 0.5930 (5) 0.11922 (15) 0.0618 (8)
O3 −0.0119 (3) 1.3800 (6) 0.12668 (17) 0.0857 (11)
C1 0.4888 (4) 0.3163 (6) 0.1977 (2) 0.0452 (8)
C2 0.5710 (4) 0.2416 (6) 0.1451 (2) 0.0454 (8)
C3 0.6340 (3) 0.0518 (6) 0.1842 (2) 0.0462 (9)
C4 0.7255 (4) −0.0986 (8) 0.1629 (2) 0.0600 (10)
H4A 0.7602 −0.0871 0.1134 0.072*
C5 0.7627 (4) −0.2620 (7) 0.2159 (3) 0.0659 (12)
H5A 0.8227 −0.3641 0.2020 0.079*
C6 0.7126 (4) −0.2797 (7) 0.2907 (3) 0.0615 (11)
H6A 0.7400 −0.3935 0.3258 0.074*
C7 0.6235 (3) −0.1329 (7) 0.3142 (2) 0.0542 (9)
H7A 0.5910 −0.1428 0.3645 0.065*
C8 0.5854 (3) 0.0286 (6) 0.2590 (2) 0.0446 (8)
C9 0.4003 (4) 0.5035 (6) 0.1875 (2) 0.0453 (8)
C10 0.3304 (3) 0.5853 (6) 0.2518 (2) 0.0398 (7)
C11 0.2520 (3) 0.7699 (5) 0.23210 (18) 0.0366 (7)
C12 0.1271 (4) 1.0842 (6) 0.1664 (2) 0.0440 (8)
C13 0.1085 (3) 1.0533 (6) 0.2467 (2) 0.0421 (8)
C14 0.0248 (4) 1.1810 (7) 0.2967 (2) 0.0532 (10)
H14A −0.0085 1.3050 0.2659 0.080*
H14B 0.0819 1.2204 0.3489 0.080*
H14C −0.0527 1.0996 0.3075 0.080*
C15 0.0719 (4) 1.2547 (6) 0.1092 (2) 0.0514 (9)
C16 0.1266 (4) 1.2735 (7) 0.0292 (2) 0.0591 (11)
H16A 0.1020 1.4083 0.0044 0.089*
H16B 0.0871 1.1649 −0.0087 0.089*
H16C 0.2259 1.2593 0.0406 0.089*
C17 0.3444 (3) 0.4875 (6) 0.3318 (2) 0.0446 (8)
C18 0.1851 (3) 0.8306 (5) 0.37089 (19) 0.0377 (7)
C19 0.0806 (4) 0.7114 (6) 0.3935 (2) 0.0488 (8)
H19A 0.0069 0.6639 0.3535 0.059*
C20 0.0879 (5) 0.6641 (7) 0.4774 (3) 0.0629 (11)
H20A 0.0178 0.5853 0.4943 0.076*
C21 0.1971 (5) 0.7323 (9) 0.5355 (2) 0.0687 (13)
H21A 0.2022 0.6964 0.5915 0.082*
C22 0.2995 (4) 0.8532 (8) 0.5121 (2) 0.0669 (13)
H22A 0.3730 0.9003 0.5524 0.080*
C23 0.2939 (3) 0.9058 (7) 0.4283 (2) 0.0496 (9)
H23A 0.3621 0.9895 0.4118 0.059*
C24 0.5966 (5) 0.3262 (8) 0.0633 (2) 0.0680 (12)
H24D 0.6159 0.4739 0.0688 0.102*
H24C 0.5157 0.3040 0.0211 0.102*
H24B 0.6746 0.2552 0.0476 0.102*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0576 (5) 0.0388 (5) 0.0416 (4) 0.0113 (4) 0.0137 (3) 0.0032 (4)
N1 0.0428 (14) 0.0336 (15) 0.0403 (12) 0.0021 (14) 0.0101 (10) 0.0002 (14)
N2 0.088 (2) 0.057 (2) 0.0603 (18) 0.032 (2) 0.0280 (16) 0.015 (2)
O1 0.0559 (15) 0.0382 (15) 0.0538 (13) 0.0121 (11) 0.0188 (11) −0.0001 (12)
O2 0.0834 (19) 0.0566 (19) 0.0504 (14) 0.0275 (16) 0.0252 (13) 0.0067 (14)
O3 0.103 (2) 0.080 (2) 0.0808 (19) 0.051 (2) 0.0368 (16) 0.034 (2)
C1 0.051 (2) 0.037 (2) 0.0476 (19) 0.0041 (15) 0.0099 (15) −0.0022 (15)
C2 0.051 (2) 0.038 (2) 0.0480 (18) 0.0042 (16) 0.0122 (15) −0.0086 (15)
C3 0.042 (2) 0.043 (2) 0.0524 (19) 0.0005 (15) 0.0056 (15) −0.0141 (17)
C4 0.056 (2) 0.057 (3) 0.067 (2) 0.012 (2) 0.0123 (17) −0.021 (2)
C5 0.056 (2) 0.050 (3) 0.089 (3) 0.021 (2) 0.005 (2) −0.018 (2)
C6 0.052 (2) 0.041 (2) 0.087 (3) 0.0102 (18) 0.002 (2) 0.003 (2)
C7 0.048 (2) 0.046 (2) 0.069 (2) 0.0011 (19) 0.0105 (16) 0.001 (2)
C8 0.0388 (19) 0.035 (2) 0.060 (2) 0.0044 (15) 0.0093 (15) −0.0044 (16)
C9 0.056 (2) 0.032 (2) 0.0478 (18) 0.0040 (17) 0.0091 (15) −0.0048 (16)
C10 0.0428 (19) 0.0297 (18) 0.0475 (17) −0.0001 (14) 0.0095 (14) 0.0002 (15)
C11 0.0422 (18) 0.0340 (19) 0.0343 (15) −0.0012 (14) 0.0086 (13) −0.0007 (13)
C12 0.049 (2) 0.037 (2) 0.0472 (18) 0.0065 (16) 0.0119 (15) 0.0031 (16)
C13 0.042 (2) 0.035 (2) 0.0489 (17) 0.0040 (14) 0.0060 (14) 0.0010 (15)
C14 0.060 (2) 0.046 (2) 0.055 (2) 0.0197 (19) 0.0148 (17) 0.0006 (19)
C15 0.057 (2) 0.040 (2) 0.057 (2) 0.0123 (17) 0.0098 (17) 0.0071 (17)
C16 0.072 (3) 0.052 (3) 0.052 (2) 0.008 (2) 0.0094 (18) 0.0144 (19)
C17 0.047 (2) 0.0349 (19) 0.055 (2) 0.0070 (16) 0.0174 (16) −0.0003 (17)
C18 0.0425 (18) 0.0314 (19) 0.0407 (16) 0.0066 (13) 0.0112 (13) 0.0004 (13)
C19 0.049 (2) 0.042 (2) 0.058 (2) 0.0021 (17) 0.0161 (16) 0.0010 (18)
C20 0.072 (3) 0.050 (3) 0.075 (3) 0.008 (2) 0.036 (2) 0.020 (2)
C21 0.076 (3) 0.084 (4) 0.049 (2) 0.020 (3) 0.018 (2) 0.020 (2)
C22 0.066 (3) 0.082 (4) 0.0483 (19) 0.013 (3) 0.0006 (17) −0.009 (2)
C23 0.0476 (19) 0.049 (2) 0.0528 (18) −0.0024 (19) 0.0118 (15) −0.008 (2)
C24 0.079 (3) 0.070 (3) 0.060 (2) 0.011 (2) 0.029 (2) −0.002 (2)

Geometric parameters (Å, º)

S1—C11 1.725 (3) C10—C17 1.425 (4)
S1—C12 1.752 (4) C12—C13 1.363 (4)
N1—C11 1.372 (4) C12—C15 1.467 (5)
N1—C13 1.377 (5) C13—C14 1.493 (4)
N1—C18 1.456 (4) C14—H14A 0.9600
N2—C17 1.144 (4) C14—H14B 0.9600
O1—C8 1.368 (4) C14—H14C 0.9600
O1—C1 1.396 (4) C15—C16 1.496 (5)
O2—C9 1.233 (4) C16—H16A 0.9600
O3—C15 1.213 (5) C16—H16B 0.9600
C1—C2 1.361 (5) C16—H16C 0.9600
C1—C9 1.465 (5) C18—C23 1.369 (5)
C2—C3 1.451 (5) C18—C19 1.375 (4)
C2—C24 1.494 (5) C19—C20 1.384 (5)
C3—C8 1.390 (5) C19—H19A 0.9300
C3—C4 1.396 (5) C20—C21 1.363 (6)
C4—C5 1.358 (6) C20—H20A 0.9300
C4—H4A 0.9300 C21—C22 1.370 (6)
C5—C6 1.394 (5) C21—H21A 0.9300
C5—H5A 0.9300 C22—C23 1.393 (5)
C6—C7 1.378 (5) C22—H22A 0.9300
C6—H6A 0.9300 C23—H23A 0.9300
C7—C8 1.370 (5) C24—H24D 0.9600
C7—H7A 0.9300 C24—H24C 0.9600
C9—C10 1.444 (4) C24—H24B 0.9600
C10—C11 1.409 (5)
C11—S1—C12 91.20 (16) C12—C13—C14 128.5 (3)
C11—N1—C13 115.5 (3) N1—C13—C14 119.3 (3)
C11—N1—C18 123.1 (3) C13—C14—H14A 109.5
C13—N1—C18 121.3 (3) C13—C14—H14B 109.5
C8—O1—C1 106.4 (2) H14A—C14—H14B 109.5
C2—C1—O1 111.3 (3) C13—C14—H14C 109.5
C2—C1—C9 128.1 (3) H14A—C14—H14C 109.5
O1—C1—C9 120.6 (3) H14B—C14—H14C 109.5
C1—C2—C3 105.6 (3) O3—C15—C12 121.8 (3)
C1—C2—C24 130.1 (4) O3—C15—C16 120.8 (4)
C3—C2—C24 124.3 (3) C12—C15—C16 117.4 (3)
C8—C3—C4 118.7 (4) C15—C16—H16A 109.5
C8—C3—C2 106.6 (3) C15—C16—H16B 109.5
C4—C3—C2 134.7 (4) H16A—C16—H16B 109.5
C5—C4—C3 118.6 (4) C15—C16—H16C 109.5
C5—C4—H4A 120.7 H16A—C16—H16C 109.5
C3—C4—H4A 120.7 H16B—C16—H16C 109.5
C4—C5—C6 121.2 (4) N2—C17—C10 178.4 (4)
C4—C5—H5A 119.4 C23—C18—C19 122.4 (3)
C6—C5—H5A 119.4 C23—C18—N1 118.6 (3)
C7—C6—C5 121.6 (4) C19—C18—N1 119.0 (3)
C7—C6—H6A 119.2 C18—C19—C20 118.3 (4)
C5—C6—H6A 119.2 C18—C19—H19A 120.9
C8—C7—C6 116.2 (3) C20—C19—H19A 120.9
C8—C7—H7A 121.9 C21—C20—C19 120.5 (4)
C6—C7—H7A 121.9 C21—C20—H20A 119.8
O1—C8—C7 126.3 (3) C19—C20—H20A 119.8
O1—C8—C3 110.1 (3) C20—C21—C22 120.5 (4)
C7—C8—C3 123.7 (3) C20—C21—H21A 119.7
O2—C9—C10 119.8 (3) C22—C21—H21A 119.7
O2—C9—C1 116.2 (3) C21—C22—C23 120.3 (4)
C10—C9—C1 124.0 (3) C21—C22—H22A 119.9
C11—C10—C17 122.1 (3) C23—C22—H22A 119.9
C11—C10—C9 116.5 (3) C18—C23—C22 118.1 (4)
C17—C10—C9 121.4 (3) C18—C23—H23A 121.0
N1—C11—C10 127.6 (3) C22—C23—H23A 121.0
N1—C11—S1 109.9 (2) C2—C24—H24D 109.5
C10—C11—S1 122.6 (2) C2—C24—H24C 109.5
C13—C12—C15 127.9 (3) H24D—C24—H24C 109.5
C13—C12—S1 111.2 (3) C2—C24—H24B 109.5
C15—C12—S1 120.9 (3) H24D—C24—H24B 109.5
C12—C13—N1 112.3 (3) H24C—C24—H24B 109.5
C8—O1—C1—C2 −0.7 (4) C18—N1—C11—S1 −173.8 (2)
C8—O1—C1—C9 179.4 (3) C17—C10—C11—N1 −0.2 (5)
O1—C1—C2—C3 0.9 (4) C9—C10—C11—N1 −178.1 (3)
C9—C1—C2—C3 −179.2 (3) C17—C10—C11—S1 179.8 (3)
O1—C1—C2—C24 −179.3 (4) C9—C10—C11—S1 1.9 (4)
C9—C1—C2—C24 0.6 (7) C12—S1—C11—N1 −1.1 (3)
C1—C2—C3—C8 −0.8 (4) C12—S1—C11—C10 178.9 (3)
C24—C2—C3—C8 179.4 (4) C11—S1—C12—C13 0.2 (3)
C1—C2—C3—C4 179.0 (4) C11—S1—C12—C15 178.9 (3)
C24—C2—C3—C4 −0.8 (7) C15—C12—C13—N1 −177.8 (3)
C8—C3—C4—C5 0.3 (6) S1—C12—C13—N1 0.7 (4)
C2—C3—C4—C5 −179.4 (4) C15—C12—C13—C14 1.6 (7)
C3—C4—C5—C6 −0.7 (6) S1—C12—C13—C14 −179.9 (3)
C4—C5—C6—C7 0.0 (6) C11—N1—C13—C12 −1.6 (4)
C5—C6—C7—C8 1.1 (6) C18—N1—C13—C12 174.0 (3)
C1—O1—C8—C7 179.8 (3) C11—N1—C13—C14 178.9 (3)
C1—O1—C8—C3 0.1 (4) C18—N1—C13—C14 −5.4 (5)
C6—C7—C8—O1 178.8 (3) C13—C12—C15—O3 −7.9 (7)
C6—C7—C8—C3 −1.6 (6) S1—C12—C15—O3 173.7 (3)
C4—C3—C8—O1 −179.4 (3) C13—C12—C15—C16 170.0 (4)
C2—C3—C8—O1 0.4 (4) S1—C12—C15—C16 −8.4 (5)
C4—C3—C8—C7 0.9 (5) C11—N1—C18—C23 82.6 (4)
C2—C3—C8—C7 −179.3 (3) C13—N1—C18—C23 −92.7 (4)
C2—C1—C9—O2 8.2 (6) C11—N1—C18—C19 −97.8 (4)
O1—C1—C9—O2 −172.0 (3) C13—N1—C18—C19 86.9 (4)
C2—C1—C9—C10 −171.7 (4) C23—C18—C19—C20 −1.0 (5)
O1—C1—C9—C10 8.2 (5) N1—C18—C19—C20 179.5 (3)
O2—C9—C10—C11 −1.3 (5) C18—C19—C20—C21 −0.8 (6)
C1—C9—C10—C11 178.5 (3) C19—C20—C21—C22 1.7 (7)
O2—C9—C10—C17 −179.3 (3) C20—C21—C22—C23 −0.8 (7)
C1—C9—C10—C17 0.6 (5) C19—C18—C23—C22 1.9 (6)
C13—N1—C11—C10 −178.2 (3) N1—C18—C23—C22 −178.6 (4)
C18—N1—C11—C10 6.2 (5) C21—C22—C23—C18 −1.0 (6)
C13—N1—C11—S1 1.8 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14A···O3 0.96 2.30 2.999 (5) 129

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6913).

References

  1. Abdel-Aziz, H. A., Abdel-Wahab, B. F., El-Sharief, M. A. M. Sh. & Abdulla, M. M. (2009). Monatsh. Chem. 140, 431–437.
  2. Abdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1255–o1256. [DOI] [PMC free article] [PubMed]
  3. Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Dawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem 16, 621–627.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Fun, H.-K., Quah, C. K. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1682. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035039/hb6913sup1.cif

e-68-o2727-sup1.cif (28.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035039/hb6913Isup2.hkl

e-68-o2727-Isup2.hkl (139KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812035039/hb6913Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES