Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 23;68(Pt 9):o2732. doi: 10.1107/S1600536812035568

1′-Benzylspiro­[chromene-2,4′-piperi­dine]-4-carbonitrile

P Rajalakshmi a, N Srinivasan a,*, R V Krishnakumar a
PMCID: PMC3435744  PMID: 22969615

Abstract

In the title compound, C21H20N2O, the piperidine ring adopts a chair conformation while the pyran ring adopts a screw-boat conformation. The piperidine ring forms dihedral angles of 65.75 (3) and 67.79 (5)° with the chroman and methyl-substituted benzene rings, respectively. The crystal structure features weak C—H⋯π and π–π [centroid–centroid distance = 3.8098 (8) Å] inter­actions.

Related literature  

For the biological activity of piperidine­carbonitrile derivatives, see: Cardellicchio et al. (2010); Huang et al. (2008); Kumar et al. (2010); Arbiser et al. (2007). For uses of piperidine­carbonitrile derivatives, see: Barth et al. (2005); Vicente (2001); Terasaki et al. (2003). For industrial applications, see: Eller et al. (2002). For puckering prameters, see: Cremer & Pople (1975).graphic file with name e-68-o2732-scheme1.jpg

Experimental  

Crystal data  

  • C21H20N2O

  • M r = 316.39

  • Monoclinic, Inline graphic

  • a = 15.1666 (9) Å

  • b = 10.0472 (6) Å

  • c = 12.4360 (8) Å

  • β = 113.931 (2)°

  • V = 1732.11 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T min = 0.974, T max = 0.981

  • 24973 measured reflections

  • 6238 independent reflections

  • 3363 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.152

  • S = 1.01

  • 6238 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLUTON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035568/gw2123sup1.cif

e-68-o2732-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035568/gw2123Isup2.hkl

e-68-o2732-Isup2.hkl (299.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812035568/gw2123Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.93 2.95 3.7587 (15) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT-Madras, India, for the data collection.

supplementary crystallographic information

Comment

Piperidine carbonitrile derivatives are used as sensitizers in photodynamic therapy (PDT) (Vicente, 2001) and in boron neutron capture therapy (BNCT) (Barth et al., 2005) of brain tumors, which protects the central nervous system from drugs and endogenous molecules (Terasaki et al., 2003) and exhibits good bioactivities (Cardellicchio et al. 2010; Huang et al. 2008; Kumar et al. 2010). Also, piperidines find application in the production of dipiperidinyl dithiuram tetrasulfide which is used as a rubber vulcanization accelerator (Eller et al. 2002). The piperidine structural motif is present in natural alkaloids of fire ant toxin solenopsin and is an inhibitor of phosphatidylinositol-3-kinase signalling and angiogenesis (Arbiser et al. 2007).

In the title molecule (Fig. 1), the puckering conformation (Cremer & Pople, 1975) of the pyran ring (C8/C7/C2/O1/C1/C9) is nearly screw boat (5S4) with parameters: Q = 0.3407 (12) Å, θ = 116.2 (2)° and φ = 213.0 (2)°. The deviation of O1 and C1 from the mean plane defined by the rest of the atoms is -0.6934 Å and 0.6178 Å, respectively. The puckering of the piperidine ring (N2/C10/C11/C1/C12/C13) with parameters of Q = 0.5660 (14) Å, θ = 173.13 (13) ° and φ = 181.5 (12) ° is close to ideal chair (1C4) and the deviations of N2 and C1 from the mean plane defined by the rest of the atoms by -0.6934 (16) Å and 0.6178 (17) Å, respectively.

The crystal structure of the title compound demonstrates the importance of weak interactions in optimizing the molecular aggregation in crystals. With the lone acceptor oxygen O1 unavailable for participation in intermolecular interactions for sterical reasons, the weak C–H···π and π···π interactions assume significance. A C3—H3···Cg1 (1 - x, 1/2 + y, 1/2 - z), Cg1 being the centroid of the benzene ring defined by C15 – C20, having a distance of 2.95 Å and angle of 146°, generates chains running along the b axis. A Cg2··· Cg2 (-x + 1, y + 1/2, -z + 1/2) interaction, Cg2 being the centroid of the benzene ring defined by C2 – C7, observed between two benzene rings of the chroman. The corresponding ring-centroid separation is 3.8098 (8) Å, with an interplanar spacing of ca 3.51 Å and a ring offset of ca 1.48 Å. These interactions generate a π-stacked extended sheets running parallel to the [011] direction (Fig. 3).

The accurate description of the crystal structure of title compound is of interest due to the absence of conventional hydrogen bonding and thus gains importance in the context of crystal structure prediction. Precise single-crystal X-ray investigations on similar compounds might throw light on the delicate nature of intermolecular interactions.

Experimental

Trimethylsilylcyanide (1.2 mmol) was added to a mixture of 1'1'-benzyl-3, 4-dihydrospiro [1-benzopyran-2, 4'- piperidine]-4-one (1.0 mmol) and catalytic amount of ZnI2 in dichloromethane (10 vol), under a nitrogen atmosphere. The reaction mixture was stirred at 50°C for 6 h and then cooled to room temperature, dilute HCl (5 ml) was added and stirring continued for additional 2 h. The solution was extracted with ethylacetate (20 ml), dried over Na2SO4 and evaporated to dryness. The crude product was dissolved in benzene (10 ml), to which tosic acid (0.1 mmol) had been added and the solution was heated to reflux for 2 h. After completion of the reaction as indicated by TLC, the reaction mixture was concentrated under reduced pressure. The residue was diluted with ethylacetate (20 ml), washed with bicarbonate solution (10 ml) dried and concentrated. The crude product was purified by column chromatography to provide the desired product as colorless solid. Crystals of the title compound were grown from its solution in ethanol by slow evaporation at room temperature.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Part of the crystal structure of title compound showing the formation of a chain running along [010] direction generated by a C—H···π interaction. For the sake of clarity, the H atoms not involved in the motif have been omitted.

Fig. 3.

Fig. 3.

Crystal structure of title compound showing the formation of a extended sheet running along [011] plane generated by a C—H···π and π ···π interactions. For the sake of clarity, the H atoms not involved in the motif have been omitted

Crystal data

C21H20N2O F(000) = 672
Mr = 316.39 Dx = 1.213 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6238 reflections
a = 15.1666 (9) Å θ = 2.7–29.4°
b = 10.0472 (6) Å µ = 0.08 mm1
c = 12.4360 (8) Å T = 298 K
β = 113.931 (2)° Block, colourless
V = 1732.11 (18) Å3 0.35 × 0.30 × 0.25 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer 6238 independent reflections
Radiation source: fine-focus sealed tube 3363 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 32.8°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −23→22
Tmin = 0.974, Tmax = 0.981 k = −15→15
24973 measured reflections l = −18→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.085P] where P = (Fo2 + 2Fc2)/3
6238 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.20929 (5) 0.90059 (8) 0.08396 (8) 0.0525 (2)
N1 −0.11382 (9) 0.61311 (13) −0.09299 (14) 0.0841 (4)
N2 0.43051 (7) 0.73556 (11) 0.14770 (9) 0.0543 (3)
C1 0.22110 (8) 0.76526 (11) 0.05117 (10) 0.0458 (3)
C2 0.13926 (8) 0.92304 (11) 0.12528 (10) 0.0460 (3)
C3 0.15085 (9) 1.02973 (13) 0.19913 (11) 0.0579 (3)
H3 0.2068 1.0808 0.2243 0.070*
C4 0.07830 (11) 1.06010 (15) 0.23549 (12) 0.0686 (4)
H4 0.0859 1.1318 0.2858 0.082*
C5 −0.00460 (10) 0.98619 (15) 0.19857 (12) 0.0675 (4)
H5 −0.0529 1.0080 0.2235 0.081*
C6 −0.01627 (9) 0.87965 (13) 0.12457 (12) 0.0578 (3)
H6 −0.0727 0.8297 0.0996 0.069*
C7 0.05550 (8) 0.84568 (11) 0.08656 (10) 0.0460 (3)
C8 0.04828 (8) 0.73709 (11) 0.00511 (11) 0.0495 (3)
C9 0.12497 (8) 0.70138 (12) −0.01467 (11) 0.0516 (3)
H9 0.1187 0.6359 −0.0701 0.062*
C10 0.27778 (9) 0.68420 (13) 0.16113 (11) 0.0540 (3)
H10A 0.2448 0.6875 0.2135 0.065*
H10B 0.2797 0.5920 0.1391 0.065*
C11 0.37980 (9) 0.73457 (15) 0.22566 (11) 0.0600 (3)
H11A 0.3784 0.8239 0.2544 0.072*
H11B 0.4140 0.6778 0.2929 0.072*
C12 0.38213 (8) 0.82572 (14) 0.04959 (11) 0.0562 (3)
H12A 0.4177 0.8293 0.0001 0.067*
H12B 0.3809 0.9146 0.0794 0.067*
C13 0.27973 (8) 0.77961 (13) −0.02271 (10) 0.0515 (3)
H13A 0.2816 0.6946 −0.0587 0.062*
H13B 0.2482 0.8432 −0.0853 0.062*
C14 0.53183 (9) 0.77325 (17) 0.21193 (13) 0.0705 (4)
H14A 0.5590 0.7223 0.2843 0.085*
H14B 0.5352 0.8667 0.2329 0.085*
C15 0.59135 (8) 0.75002 (13) 0.14180 (12) 0.0566 (3)
C16 0.58601 (8) 0.63042 (14) 0.08502 (12) 0.0605 (3)
H16 0.5452 0.5641 0.0903 0.073*
C17 0.63989 (9) 0.60737 (15) 0.02078 (13) 0.0671 (4)
H17 0.6346 0.5264 −0.0176 0.081*
C18 0.70137 (9) 0.70297 (17) 0.01293 (14) 0.0722 (4)
H18 0.7380 0.6872 −0.0303 0.087*
C19 0.70834 (10) 0.82101 (18) 0.06891 (18) 0.0856 (5)
H19 0.7501 0.8862 0.0640 0.103*
C20 0.65394 (10) 0.84503 (15) 0.13306 (16) 0.0792 (5)
H20 0.6595 0.9264 0.1709 0.095*
C21 −0.04213 (9) 0.66841 (13) −0.05118 (13) 0.0603 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0519 (4) 0.0463 (5) 0.0652 (6) −0.0025 (3) 0.0299 (4) −0.0075 (4)
N1 0.0619 (7) 0.0730 (8) 0.1129 (11) −0.0153 (6) 0.0308 (7) −0.0042 (8)
N2 0.0463 (5) 0.0737 (7) 0.0408 (6) 0.0046 (4) 0.0154 (4) −0.0039 (5)
C1 0.0492 (5) 0.0463 (6) 0.0452 (6) 0.0024 (4) 0.0225 (5) −0.0040 (5)
C2 0.0491 (5) 0.0444 (6) 0.0453 (6) 0.0069 (5) 0.0200 (5) 0.0035 (5)
C3 0.0613 (7) 0.0534 (7) 0.0541 (8) 0.0061 (6) 0.0183 (6) −0.0061 (6)
C4 0.0829 (9) 0.0674 (9) 0.0556 (8) 0.0221 (7) 0.0281 (7) −0.0051 (7)
C5 0.0751 (9) 0.0775 (9) 0.0617 (9) 0.0274 (7) 0.0399 (7) 0.0133 (7)
C6 0.0576 (6) 0.0607 (8) 0.0627 (8) 0.0106 (6) 0.0323 (6) 0.0167 (6)
C7 0.0500 (5) 0.0427 (6) 0.0473 (7) 0.0063 (4) 0.0219 (5) 0.0094 (5)
C8 0.0505 (6) 0.0436 (6) 0.0535 (7) −0.0026 (5) 0.0203 (5) 0.0046 (5)
C9 0.0550 (6) 0.0467 (6) 0.0524 (7) −0.0021 (5) 0.0211 (5) −0.0069 (5)
C10 0.0611 (7) 0.0600 (7) 0.0474 (7) 0.0074 (5) 0.0286 (6) 0.0056 (6)
C11 0.0629 (7) 0.0780 (9) 0.0389 (7) 0.0091 (6) 0.0203 (6) 0.0025 (6)
C12 0.0528 (6) 0.0717 (8) 0.0490 (7) 0.0022 (6) 0.0257 (5) 0.0028 (6)
C13 0.0517 (6) 0.0646 (7) 0.0395 (6) 0.0074 (5) 0.0197 (5) 0.0039 (5)
C14 0.0525 (7) 0.0940 (11) 0.0560 (8) −0.0006 (7) 0.0128 (6) −0.0216 (8)
C15 0.0404 (5) 0.0647 (8) 0.0545 (8) 0.0012 (5) 0.0086 (5) −0.0105 (6)
C16 0.0505 (6) 0.0618 (8) 0.0643 (9) −0.0030 (6) 0.0181 (6) −0.0072 (6)
C17 0.0575 (7) 0.0708 (9) 0.0673 (9) 0.0113 (6) 0.0196 (6) −0.0095 (7)
C18 0.0485 (7) 0.0940 (11) 0.0735 (10) 0.0155 (7) 0.0240 (7) 0.0089 (8)
C19 0.0569 (8) 0.0800 (11) 0.1225 (15) −0.0040 (7) 0.0391 (9) 0.0061 (10)
C20 0.0590 (7) 0.0624 (9) 0.1117 (13) −0.0068 (6) 0.0298 (8) −0.0195 (8)
C21 0.0557 (7) 0.0515 (7) 0.0740 (9) −0.0034 (5) 0.0266 (6) 0.0010 (6)

Geometric parameters (Å, º)

O1—C2 1.3732 (12) C10—H10A 0.9700
O1—C1 1.4512 (13) C10—H10B 0.9700
N1—C21 1.1413 (16) C11—H11A 0.9700
N2—C12 1.4565 (16) C11—H11B 0.9700
N2—C11 1.4618 (14) C12—C13 1.5173 (17)
N2—C14 1.4652 (16) C12—H12A 0.9700
C1—C9 1.4965 (16) C12—H12B 0.9700
C1—C13 1.5227 (14) C13—H13A 0.9700
C1—C10 1.5227 (17) C13—H13B 0.9700
C2—C3 1.3757 (16) C14—C15 1.5063 (17)
C2—C7 1.3977 (16) C14—H14A 0.9700
C3—C4 1.3827 (18) C14—H14B 0.9700
C3—H3 0.9300 C15—C16 1.3793 (18)
C4—C5 1.369 (2) C15—C20 1.3812 (19)
C4—H4 0.9300 C16—C17 1.3746 (18)
C5—C6 1.375 (2) C16—H16 0.9300
C5—H5 0.9300 C17—C18 1.369 (2)
C6—C7 1.3936 (15) C17—H17 0.9300
C6—H6 0.9300 C18—C19 1.357 (2)
C7—C8 1.4623 (16) C18—H18 0.9300
C8—C9 1.3319 (15) C19—C20 1.382 (2)
C8—C21 1.4380 (17) C19—H19 0.9300
C9—H9 0.9300 C20—H20 0.9300
C10—C11 1.5122 (18)
C2—O1—C1 117.47 (8) C10—C11—H11A 109.5
C12—N2—C11 109.76 (9) N2—C11—H11B 109.5
C12—N2—C14 110.89 (11) C10—C11—H11B 109.5
C11—N2—C14 110.97 (10) H11A—C11—H11B 108.1
O1—C1—C9 110.59 (8) N2—C12—C13 110.69 (10)
O1—C1—C13 104.46 (9) N2—C12—H12A 109.5
C9—C1—C13 112.85 (10) C13—C12—H12A 109.5
O1—C1—C10 109.75 (9) N2—C12—H12B 109.5
C9—C1—C10 109.38 (9) C13—C12—H12B 109.5
C13—C1—C10 109.72 (9) H12A—C12—H12B 108.1
O1—C2—C3 117.97 (10) C12—C13—C1 112.29 (9)
O1—C2—C7 120.84 (10) C12—C13—H13A 109.1
C3—C2—C7 121.02 (10) C1—C13—H13A 109.1
C2—C3—C4 119.16 (12) C12—C13—H13B 109.1
C2—C3—H3 120.4 C1—C13—H13B 109.1
C4—C3—H3 120.4 H13A—C13—H13B 107.9
C5—C4—C3 120.99 (13) N2—C14—C15 112.75 (10)
C5—C4—H4 119.5 N2—C14—H14A 109.0
C3—C4—H4 119.5 C15—C14—H14A 109.0
C4—C5—C6 119.86 (11) N2—C14—H14B 109.0
C4—C5—H5 120.1 C15—C14—H14B 109.0
C6—C5—H5 120.1 H14A—C14—H14B 107.8
C5—C6—C7 120.75 (12) C16—C15—C20 117.47 (12)
C5—C6—H6 119.6 C16—C15—C14 120.45 (12)
C7—C6—H6 119.6 C20—C15—C14 122.07 (13)
C6—C7—C2 118.22 (11) C17—C16—C15 121.26 (13)
C6—C7—C8 124.64 (11) C17—C16—H16 119.4
C2—C7—C8 117.11 (9) C15—C16—H16 119.4
C9—C8—C21 120.83 (11) C18—C17—C16 120.38 (14)
C9—C8—C7 120.22 (10) C18—C17—H17 119.8
C21—C8—C7 118.94 (10) C16—C17—H17 119.8
C8—C9—C1 120.88 (11) C19—C18—C17 119.33 (13)
C8—C9—H9 119.6 C19—C18—H18 120.3
C1—C9—H9 119.6 C17—C18—H18 120.3
C11—C10—C1 112.40 (10) C18—C19—C20 120.53 (14)
C11—C10—H10A 109.1 C18—C19—H19 119.7
C1—C10—H10A 109.1 C20—C19—H19 119.7
C11—C10—H10B 109.1 C15—C20—C19 121.00 (14)
C1—C10—H10B 109.1 C15—C20—H20 119.5
H10A—C10—H10B 107.9 C19—C20—H20 119.5
N2—C11—C10 110.53 (10) N1—C21—C8 178.19 (16)
N2—C11—H11A 109.5
C2—O1—C1—C9 42.04 (13) C9—C1—C10—C11 174.04 (9)
C2—O1—C1—C13 163.72 (9) C13—C1—C10—C11 49.76 (13)
C2—O1—C1—C10 −78.72 (11) C12—N2—C11—C10 61.96 (14)
C1—O1—C2—C3 154.00 (11) C14—N2—C11—C10 −175.13 (11)
C1—O1—C2—C7 −30.59 (14) C1—C10—C11—N2 −56.68 (14)
O1—C2—C3—C4 175.57 (11) C11—N2—C12—C13 −61.80 (13)
C7—C2—C3—C4 0.17 (18) C14—N2—C12—C13 175.24 (9)
C2—C3—C4—C5 −0.4 (2) N2—C12—C13—C1 56.38 (13)
C3—C4—C5—C6 0.3 (2) O1—C1—C13—C12 68.12 (12)
C4—C5—C6—C7 0.06 (19) C9—C1—C13—C12 −171.70 (10)
C5—C6—C7—C2 −0.26 (17) C10—C1—C13—C12 −49.46 (13)
C5—C6—C7—C8 −177.93 (11) C12—N2—C14—C15 −68.92 (15)
O1—C2—C7—C6 −175.12 (10) C11—N2—C14—C15 168.82 (12)
C3—C2—C7—C6 0.15 (17) N2—C14—C15—C16 −48.09 (18)
O1—C2—C7—C8 2.72 (15) N2—C14—C15—C20 132.97 (15)
C3—C2—C7—C8 177.99 (11) C20—C15—C16—C17 −0.9 (2)
C6—C7—C8—C9 −171.55 (12) C14—C15—C16—C17 −179.90 (12)
C2—C7—C8—C9 10.76 (17) C15—C16—C17—C18 0.8 (2)
C6—C7—C8—C21 7.31 (18) C16—C17—C18—C19 −0.2 (2)
C2—C7—C8—C21 −170.39 (11) C17—C18—C19—C20 −0.1 (2)
C21—C8—C9—C1 −174.98 (11) C16—C15—C20—C19 0.5 (2)
C7—C8—C9—C1 3.85 (18) C14—C15—C20—C19 179.50 (14)
O1—C1—C9—C8 −29.20 (16) C18—C19—C20—C15 0.0 (3)
C13—C1—C9—C8 −145.79 (12) C9—C8—C21—N1 122 (5)
C10—C1—C9—C8 91.78 (13) C7—C8—C21—N1 −57 (5)
O1—C1—C10—C11 −64.47 (12)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C15–C20 ring.

D—H···A D—H H···A D···A D—H···A
C3—H3···Cg1i 0.93 2.95 3.7587 (15) 146

Symmetry code: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2123).

References

  1. Arbiser, J. L., Kau, T., Konar, M., Narra, K., Ramchandran, R., Summers, S. A., Vlahos, C. J., Ye, K., Perry, B. N., Matter, W., Fischl, A., Cook, J., Silver, P. A., Bain, J., Cohen, P., Whitmire, D., Furness, S., Govindarajan, B. & Bowen, J. P. (2007). Blood, 109, 560–565. [DOI] [PMC free article] [PubMed]
  2. Barth, R. F., Coderre, J. A., Vicente, M. G. H. & Blue, T. E. (2005). Clin. Cancer Res. 11, 3987–4002. [DOI] [PubMed]
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison Wisconsin, USA.
  4. Cardellicchio, C., Capozzi, M. A. M. & Naso, F. (2010). Tetrahedron Asymmetry, 21, 507–517.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Eller, K., Henkes, E., Rossbacher, R. & Hoke, H. (2002). Amines, Aliphatic, in Ullmanns Encyclopedia of Industrial Chemistry, Vol. 1, p. 379. Weinheim: Wiley-VCH Verlag.
  7. Huang, P. J. J., Youssef, D., Cameron, T. S. & Jha, A. (2008). Arkivoc, pp. 165–177.
  8. Kumar, A., Gupta, M. K. & Kumar, M. (2010). Tetrahedron Lett. 51, 1582–1584.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Terasaki, T., Ohtsuki, S., Hori, S., Takanaga, H., Nakashima, E. & Hosoya, K. (2003). Drug Discovery Today, 8, 944–954. [DOI] [PubMed]
  12. Vicente, M. G. H. (2001). Curr. Med. Chem. Anti-Canc. Agents, 1, 175–194. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035568/gw2123sup1.cif

e-68-o2732-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035568/gw2123Isup2.hkl

e-68-o2732-Isup2.hkl (299.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812035568/gw2123Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES