Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 23;68(Pt 9):o2735. doi: 10.1107/S1600536812035611

3-Allyl-1-methyl-1H-benzotriazol-3-ium iodide

Nabeel H Buttrus a, Assim A Sabah b, Amer A Taqa c,*, Ulli Englert d
PMCID: PMC3435747  PMID: 22969618

Abstract

In the crystal structure of 1-methyl-3-allyl benzotriazolium iodide, C10H12N3 +·I, centrosymmetric dimers of coplanar cations are π-stacked with an inter­planar distance of 3.453 (6) Å. The iodide anions are situated above and below the formally positive charged triazolium rings.

Related literature  

For information on the Cambridge Structural Database, see: Allen (2002). For structural investigations of related compounds, see: Boche et al. (1996); Mouhib et al. (2011). For general information on π-stacking, see: Wright (1995).graphic file with name e-68-o2735-scheme1.jpg

Experimental  

Crystal data  

  • C10H12N3 +·I

  • M r = 301.13

  • Triclinic, Inline graphic

  • a = 7.8839 (12) Å

  • b = 8.2265 (14) Å

  • c = 9.9957 (17) Å

  • α = 114.093 (2)°

  • β = 104.033 (15)°

  • γ = 92.201 (13)°

  • V = 567.20 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.79 mm−1

  • T = 100 K

  • 0.39 × 0.04 × 0.01 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.409, T max = 0.972

  • 7816 measured reflections

  • 2798 independent reflections

  • 2503 reflections with I > 2σ(I)

  • R int = 0.089

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.066

  • S = 0.96

  • 2798 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 1.58 e Å−3

  • Δρmin = −1.35 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035611/im2367sup1.cif

e-68-o2735-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035611/im2367Isup2.hkl

e-68-o2735-Isup2.hkl (137.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812035611/im2367Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the cooperation of the Dean of the College of Dentistry and the Dean of College of Science.

supplementary crystallographic information

Comment

The asymmetric unit of the title compound 1 (Fig. 1) comprises an organic cation and an iodide anion in general positions. The heteroaromatic cation is planar within error, with a maximum deviation of 0.008 (3) Å from the least-squares plane for the nitrogen atoms N1 and N2. Neighbouring cations are related by inversion and hence coplanar for reasons of symmetry. The shortest intermolecular interaction amounts to C2···C2i = 3.453 (6) Å (i = 1 - x,-y,1 - z). Due to the antiparallel arrangement of the coplanar benzotriazolium cations, the formally positive part of each heteroaromatic system is located on top of the carbocyclic moiety of its neighbour, thus ensuring both efficient space filling and efficient dipole matching for the π-stacking (Wright, 1995). An iodide counter anion is located 3.5172 (3) Å above and below each triazolium ring of such a cation pair. This packing motif is shown in Fig. 2. Shortest interactions between the hydrogen atoms of neighbouring stacks and iodide anions amount to 3.02 Å for I1···H7Bii (ii = x,1 + y,z). No relevant interhalide contacts occur, all being longer than 5 Å. Eight other benzotriazolium salts have been documented (Version 1.13, including the updates of August 2011) in the CSD data base (Allen, 2002), among them the closely related dimethylbenzotriazolium iodide studied by Boche et al. (1996). According to the database, the average N–N distance in the heteroaromatic five membered ring is 1.316 Å (min 1.300, max 1.338 Å); we find values of 1.309 (4) Å for N1—N2 and 1.322 (4) Å for N2—N3. The interatomic distance of 1.321 (5) Å of the allylic double bond C8—C9 closely matches the result recently obtained for the corresponding bond in allyl acetate where an interatomic distance of 1.3257 (18) Å was found by high-resolution X-ray diffraction (Mouhib et al., 2010).

Experimental

To a solution of benzotriazole (1.19 g, 0.01 mol) in 10 ml of EtOH, first CH3I (0.62 ml, 0.01 mol) and then 10 ml of 10% aqueous KOH were added. The mixture was refluxed for 1h. Then allyl chloride (5 ml) was added and refluxing was continued for 1h. The reaction mixture was extracted with n-hexane (3-5) times, in order to remove the excess of CH3I . The mixture was filtered and the solvent removed under vacuum. The residue was crystallized from ethanol to give yellow crystals (yield 75%). M.p. 148-150 °C. Elemental analysis: found C: 39.56; H: 4.40; N: 13.70, Calcd. C: 39.89; H: 4.02; N: 13.95 %.

Refinement

H atoms were treated as riding with Caryl—H and Colefin—H 0.95 Å, Uiso(H) = 1.2Ueq(C); Cmethylene—H 0.99 Å, Uiso(H) = 1.2Ueq(C) and Cmethyl—H 0.98 Å, Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

: Displacement ellipsoid plot (Spek, 2009) of the asymmetric unit of 1 with thermal ellipsoids at the 50% probability level; H atoms have been omitted.

Fig. 2.

Fig. 2.

: Packing of the title compound: Two π-stacked cations related by inversion (i = 1 - x,-y,1 - z) and two counter anions are shown; H atoms have been omitted for clarity.

Crystal data

C10H12N3+·I Z = 2
Mr = 301.13 F(000) = 292
Triclinic, P1 Dx = 1.763 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8839 (12) Å Cell parameters from 2049 reflections
b = 8.2265 (14) Å θ = 2.3–25.1°
c = 9.9957 (17) Å µ = 2.79 mm1
α = 114.093 (2)° T = 100 K
β = 104.033 (15)° Rod, yellow
γ = 92.201 (13)° 0.39 × 0.04 × 0.01 mm
V = 567.20 (16) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 2798 independent reflections
Radiation source: Incoatec microsource 2503 reflections with I > 2σ(I)
Multilayer optics monochromator Rint = 0.089
ω scans θmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.409, Tmax = 0.972 k = −10→10
7816 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.006P)2] where P = (Fo2 + 2Fc2)/3
2798 reflections (Δ/σ)max = 0.002
128 parameters Δρmax = 1.58 e Å3
0 restraints Δρmin = −1.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.7209 (4) 0.1330 (4) 0.4718 (3) 0.0164 (7)
N2 0.7597 (4) −0.0107 (4) 0.3708 (3) 0.0176 (7)
N3 0.6104 (4) −0.0914 (4) 0.2612 (3) 0.0147 (7)
C1 0.4725 (5) 0.0022 (5) 0.2899 (4) 0.0140 (8)
C2 0.5465 (5) 0.1512 (5) 0.4296 (4) 0.0148 (8)
C3 0.4457 (5) 0.2804 (5) 0.4962 (4) 0.0187 (8)
H3 0.4955 0.3832 0.5906 0.022*
C4 0.2706 (5) 0.2495 (5) 0.4171 (4) 0.0211 (9)
H4 0.1965 0.3331 0.4589 0.025*
C5 0.1956 (5) 0.0978 (5) 0.2754 (4) 0.0199 (9)
H5 0.0733 0.0831 0.2252 0.024*
C6 0.2947 (5) −0.0288 (5) 0.2084 (4) 0.0168 (8)
H6 0.2454 −0.1304 0.1131 0.020*
C7 0.6077 (5) −0.2619 (5) 0.1295 (4) 0.0177 (8)
H7A 0.4846 −0.3094 0.0634 0.021*
H7B 0.6502 −0.3519 0.1665 0.021*
C8 0.7214 (5) −0.2358 (5) 0.0381 (4) 0.0205 (9)
H8 0.7091 −0.1396 0.0089 0.025*
C9 0.8387 (5) −0.3421 (6) −0.0034 (5) 0.0271 (10)
H9A 0.8527 −0.4390 0.0250 0.033*
H9B 0.9091 −0.3218 −0.0615 0.033*
C10 0.8626 (5) 0.2617 (5) 0.6012 (4) 0.0220 (9)
H10A 0.9640 0.2009 0.6201 0.033*
H10B 0.8201 0.3103 0.6922 0.033*
H10C 0.8987 0.3604 0.5781 0.033*
I1 0.77374 (3) 0.33493 (3) 0.22631 (3) 0.01529 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0169 (18) 0.0148 (17) 0.0179 (17) 0.0011 (13) 0.0009 (14) 0.0098 (14)
N2 0.0197 (19) 0.0169 (18) 0.0164 (17) 0.0031 (14) 0.0022 (14) 0.0092 (15)
N3 0.0154 (17) 0.0100 (16) 0.0167 (16) 0.0018 (12) 0.0015 (13) 0.0056 (14)
C1 0.019 (2) 0.0129 (19) 0.0162 (19) 0.0060 (15) 0.0081 (16) 0.0097 (16)
C2 0.014 (2) 0.0121 (19) 0.0166 (19) −0.0022 (15) −0.0004 (15) 0.0079 (16)
C3 0.027 (2) 0.015 (2) 0.0168 (19) 0.0045 (17) 0.0080 (17) 0.0081 (17)
C4 0.027 (2) 0.018 (2) 0.024 (2) 0.0103 (17) 0.0139 (18) 0.0103 (18)
C5 0.017 (2) 0.022 (2) 0.025 (2) 0.0064 (16) 0.0047 (17) 0.0136 (19)
C6 0.019 (2) 0.015 (2) 0.0153 (19) 0.0016 (16) 0.0012 (16) 0.0071 (16)
C7 0.019 (2) 0.013 (2) 0.019 (2) 0.0038 (15) 0.0043 (16) 0.0047 (17)
C8 0.026 (2) 0.014 (2) 0.017 (2) −0.0011 (16) 0.0033 (17) 0.0052 (17)
C9 0.023 (2) 0.031 (3) 0.025 (2) 0.0036 (19) 0.0062 (18) 0.010 (2)
C10 0.018 (2) 0.022 (2) 0.019 (2) −0.0017 (17) −0.0013 (17) 0.0061 (18)
I1 0.01635 (15) 0.01309 (14) 0.01588 (14) 0.00263 (10) 0.00268 (10) 0.00672 (11)

Geometric parameters (Å, º)

N1—N2 1.309 (4) C5—C6 1.375 (5)
N1—C2 1.370 (5) C5—H5 0.9500
N1—C10 1.460 (4) C6—H6 0.9500
N2—N3 1.322 (4) C7—C8 1.492 (5)
N3—C1 1.376 (4) C7—H7A 0.9900
N3—C7 1.476 (4) C7—H7B 0.9900
C1—C2 1.394 (5) C8—C9 1.321 (5)
C1—C6 1.394 (5) C8—H8 0.9500
C2—C3 1.396 (5) C9—H9A 0.9500
C3—C4 1.370 (5) C9—H9B 0.9500
C3—H3 0.9500 C10—H10A 0.9800
C4—C5 1.417 (5) C10—H10B 0.9800
C4—H4 0.9500 C10—H10C 0.9800
N2—N1—C2 112.4 (3) C5—C6—C1 115.4 (3)
N2—N1—C10 119.4 (3) C5—C6—H6 122.3
C2—N1—C10 127.7 (3) C1—C6—H6 122.3
N1—N2—N3 105.9 (3) N3—C7—C8 111.4 (3)
N2—N3—C1 111.9 (3) N3—C7—H7A 109.3
N2—N3—C7 119.8 (3) C8—C7—H7A 109.3
C1—N3—C7 128.3 (3) N3—C7—H7B 109.3
N3—C1—C2 104.8 (3) C8—C7—H7B 109.3
N3—C1—C6 132.4 (3) H7A—C7—H7B 108.0
C2—C1—C6 122.8 (3) C9—C8—C7 122.1 (4)
N1—C2—C1 105.0 (3) C9—C8—H8 118.9
N1—C2—C3 133.4 (4) C7—C8—H8 118.9
C1—C2—C3 121.6 (4) C8—C9—H9A 120.0
C4—C3—C2 115.8 (4) C8—C9—H9B 120.0
C4—C3—H3 122.1 H9A—C9—H9B 120.0
C2—C3—H3 122.1 N1—C10—H10A 109.5
C3—C4—C5 122.5 (4) N1—C10—H10B 109.5
C3—C4—H4 118.7 H10A—C10—H10B 109.5
C5—C4—H4 118.7 N1—C10—H10C 109.5
C6—C5—C4 121.9 (4) H10A—C10—H10C 109.5
C6—C5—H5 119.1 H10B—C10—H10C 109.5
C4—C5—H5 119.1

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2367).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Boche, G., Andrews, P., Harms, K., Marsch, M., Rangappa, K. S., Schimeczek, M. & Willeke, C. (1996). J. Am. Chem. Soc. 118, 4925–4930.
  3. Bruker (1999). SAINT-Plus Bruker AXS Inc., Madison, Wisconson, USA.
  4. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconson, USA.
  5. Mouhib, H., Jelisavac, D., Stahl, W., Wang, R., Kalf, I. & Englert, U. (2011). ChemPhysChem, 12, 761–764. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Wright, J. D. (1995). Molecular Crystals, 2nd ed. Cambridge University Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035611/im2367sup1.cif

e-68-o2735-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035611/im2367Isup2.hkl

e-68-o2735-Isup2.hkl (137.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812035611/im2367Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES