Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 25;68(Pt 9):o2763. doi: 10.1107/S1600536812035921

4-But­oxy-N′-[1-(4-methyl­phen­yl)ethyl­idene]benzohydrazide

Nefise Dilek a,*, Bilal Gunes b, Ramazan Gup c
PMCID: PMC3435798  PMID: 22969644

Abstract

The mol­ecule of the title compound, C20H24N2O2, exists in a trans conformation with respect to the C=N bond. The dihedral angle between the benzene rings is 79.0 (1)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [001]. Two weak C—H⋯O inter­actions also occur.

Related literature  

For acyl­hydrazone compounds, see: Rollas & Küçükgüzel (2007); Vicini et al. (2006); Chimenti et al. (2007). For aroylhydrazone compounds, see: Barbazan et al., 2008; Dang et al., 2007. Hydrazones typically act as bi- and tridentate, mono or biprotic depending on the reaction conditions, see: Gup & Kirkan (2005); Naskar et al. (2004); Sreeja et al. (2003). For bond lengths and angles in similar structures, see: Li & Ban (2009); Mao et al. (2011); Singh & Singh (2010).graphic file with name e-68-o2763-scheme1.jpg

Experimental  

Crystal data  

  • C20H24N2O2

  • M r = 324.41

  • Monoclinic, Inline graphic

  • a = 15.0800 (4) Å

  • b = 14.0134 (4) Å

  • c = 8.2419 (2) Å

  • β = 94.609 (2)°

  • V = 1736.06 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 105 K

  • 0.38 × 0.21 × 0.17 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.970, T max = 0.987

  • 8163 measured reflections

  • 2150 independent reflections

  • 1980 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.101

  • S = 0.93

  • 2150 reflections

  • 220 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536812035921/bq2373sup1.cif

e-68-o2763-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035921/bq2373Isup2.hkl

e-68-o2763-Isup2.hkl (105.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812035921/bq2373Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 2.15 2.975 (2) 155
C16—H16C⋯O2i 0.98 2.57 3.307 (3) 131
C17—H17⋯O2ii 0.95 2.59 3.527 (3) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskisehir, Turkey, for the use of the X-ray diffractometer.

supplementary crystallographic information

Comment

Acylhydrazones and their derivatives constitute a versatile class of compounds in organic and coordination chemistry. These compounds have interesting biological properties, such as anti-inflammatory, analgesic, anticonvulsant, antituberculous, antitumor, anti-HIV and antimicrobial activity (Rollas & Küçükgüzel, 2007; Vicini et al., 2006; Chimenti et al., 2007).

Aroylhydrazones are important compounds for drug design, as possible ligands for metal complexes, catalysis and also for the syntheses of heterocyclic compounds (Barbazan et al., 2008; Dang et al., 2007). The ease of preparation, increased hydrolytic stability relative to imines, and tendency toward crystallinity are all desirable characteristics of hydrazones. Due to these positive traits, the chemical properties of aroylhydrazones have been extensively studied for a long time. Acylhydrazones possess two connected nitrogen atoms of different nature and a carbon-nitrogen double bond that is conjugated with a lone electron pair of the terminal nitrogen atom. These structural fragments are mainly responsible for the physical and chemical properties of hydrazones. The introduction of functional groups in the hydrazone molecules expands the scope of use in coordination chemistry.

Aroylhydrazones are potential ligands due to having a number of bonding sites. They can act a neutral or monoanionic bidentate or tridentate ligand depending on the substituents and the reaction conditions. Furthermore, abilities to coordinate to metals either in keto (I) or enol (II) tautomeric form make them attractive as ligands. This compound is in the keto form in the solid state. The keto hydrazone moiety may coordinate to metals in the keto amide or deprotonated enolimine form. Hydrazones typically act as bi- and tridentate, mono or biprotic depending on the reaction conditions (Sreeja et al., 2003; Naskar et al., 2004; Gup & Kirkan, 2005).

The crystal structure is shown in Fig. 1 with atom-numbering scheme. The bond lengths and angles are in the normal ranges in the molecule. The molecule exist in a trans configuration with respect to the C10═N2 [1.286 (3) Å] bond and the torsion angle N1—N2—C10—C11 = 176.6 (2)°. The O1—C5, O1—C4 and O2═C9 bond lengths are 1.363 (3) Å, 1.444 (3) Å and 1.229 (3) Å, respectively. The N1—C9 and N1—N2 bond lengths are 1.356 (3) Å and 1.390 (3) Å. The other bond lengths and angles in the molecule are within expected ranges, and similar to the other studies (Singh & Singh, 2010; Li & Ban, 2009; Mao et al., 2011).

The ring A (C5–C8, C19, C20) and B (C11–C14, C17, C18) are each essentially planar. The dihedral angle between two substituted benzene rings is 79.0 (1)°, indicating the Schiff base molecule is twisted. The N1 atom lie above 0.937 (4) Å from the A plane. The N2 atom lie above 0.585 (4) Å from the B plane.

As can be seen from the packing diagram (Fig. 2), inter-molecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules and these hydrogen bonds may be effective in the stabilization of the crystal structure. In these interactions, there are the N1, C16 and C17 atoms of molecule as donor and the O2 atom of the other molecules as acceptor (Table 1, Fig. 2).

Experimental

4'-Methylacetophenon (4 mmol, 0.552 g) dissolved in ethanol (10 ml) was added dropwise to a suspension of 4-hydroxybenzohydrazide (4 mmol, 0.608 g) with two drops of glacial acetic acid in ethanol (40 ml) in room temperature. The reaction mixture was refluxed for further 8 h and the colorless product was filtered. The pure hydrazone was collected by crystallization from ethanol.

A mixture 4-hydroxy-N'-[(1E)-1-(4-methylphenyl)ethylidene]benzohydrazide (10 mmol, 2.68 g), 1-bromobutane (10 mmol, 1.370 g) and dry K2CO3 (10 mmol, 1.380 g) in 40 ml acetone was refluxed with stirring for 24 h and poured to 200 ml of cold water. The white precipitate formed was filtered and washed with water and finally recrystallized from acetone-water. Chemical structure of title compound is given (I).

Refinement

The H atoms were positioned geometrically, with C—H = 0.95 Å, N—H = 0.88 Å, and and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). Also, the methyl H atoms were positioned geometrically, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The absolute structure could not be determined and 1089 Friedel pairs were averaged before the last refinement.

Figures

Fig. 1.

Fig. 1.

An ORTEP drawing of molecular structure with the crystallographic numbering scheme. Thermal ellipsoids are drawn at 30% probability levels.

Fig. 2.

Fig. 2.

A packing diagram for (I), projected along c direction. Hydrogen bonds are indicated by dashed lines.

Crystal data

C20H24N2O2 F(000) = 696
Mr = 324.41 Dx = 1.241 Mg m3
Monoclinic, C1c1 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C-2yc Cell parameters from 3295 reflections
a = 15.0800 (4) Å θ = 2.7–28.2°
b = 14.0134 (4) Å µ = 0.08 mm1
c = 8.2419 (2) Å T = 105 K
β = 94.609 (2)° Prism, colourless
V = 1736.06 (8) Å3 0.38 × 0.21 × 0.17 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2150 independent reflections
Radiation source: sealed tube 1980 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
φ and ω scans θmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan (Blessing, 1995) h = −20→14
Tmin = 0.970, Tmax = 0.987 k = −18→17
8163 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.7866P] where P = (Fo2 + 2Fc2)/3
2150 reflections (Δ/σ)max < 0.001
220 parameters Δρmax = 0.38 e Å3
2 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.37326 (10) 0.84731 (12) 0.17841 (19) 0.0229 (4)
O2 0.09570 (11) 0.91173 (11) 0.70734 (19) 0.0221 (3)
N1 0.02616 (12) 0.99195 (14) 0.4926 (2) 0.0206 (4)
H1 0.0300 1.0165 0.3952 0.025*
N2 −0.04815 (12) 1.00759 (14) 0.5785 (2) 0.0204 (4)
C1 0.47160 (18) 0.8908 (2) −0.2273 (3) 0.0316 (6)
H1A 0.4698 0.8420 −0.3127 0.047*
H1B 0.5106 0.9431 −0.2557 0.047*
H1C 0.4114 0.9154 −0.2174 0.047*
C2 0.50729 (16) 0.84699 (19) −0.0661 (3) 0.0265 (5)
H2A 0.5691 0.8250 −0.0755 0.032*
H2B 0.5089 0.8966 0.0195 0.032*
C3 0.45168 (16) 0.76347 (18) −0.0149 (3) 0.0261 (5)
H3A 0.4450 0.7172 −0.1059 0.031*
H3B 0.4843 0.7310 0.0785 0.031*
C4 0.36010 (16) 0.79010 (17) 0.0327 (3) 0.0236 (5)
H4A 0.3274 0.8269 −0.0555 0.028*
H4B 0.3255 0.7320 0.0540 0.028*
C5 0.30078 (15) 0.86690 (15) 0.2613 (3) 0.0186 (4)
C6 0.31990 (15) 0.90727 (16) 0.4156 (3) 0.0198 (4)
H6 0.3799 0.9204 0.4533 0.024*
C7 0.25217 (14) 0.92824 (15) 0.5135 (3) 0.0192 (4)
H7 0.2658 0.9530 0.6199 0.023*
C8 0.16373 (14) 0.91299 (15) 0.4559 (3) 0.0181 (4)
C9 0.09251 (14) 0.93751 (15) 0.5645 (3) 0.0191 (4)
C10 −0.09609 (14) 1.08078 (16) 0.5367 (3) 0.0190 (4)
C11 −0.17777 (14) 1.09221 (16) 0.6243 (3) 0.0179 (4)
C12 −0.21596 (15) 1.01299 (16) 0.6959 (3) 0.0217 (5)
H12 −0.1916 0.9512 0.6826 0.026*
C13 −0.28925 (15) 1.02417 (17) 0.7862 (3) 0.0230 (5)
H13 −0.3136 0.9700 0.8358 0.028*
C14 −0.32750 (15) 1.11314 (17) 0.8052 (3) 0.0218 (5)
C15 −0.40582 (17) 1.1251 (2) 0.9068 (3) 0.0296 (5)
H15A −0.4605 1.1320 0.8350 0.044*
H15B −0.3971 1.1822 0.9749 0.044*
H15C −0.4107 1.0690 0.9764 0.044*
C16 −0.07349 (17) 1.15369 (17) 0.4137 (3) 0.0257 (5)
H16A −0.0238 1.1930 0.4591 0.039*
H16B −0.1254 1.1944 0.3861 0.039*
H16C −0.0565 1.1214 0.3154 0.039*
C17 −0.29159 (15) 1.19105 (16) 0.7300 (3) 0.0224 (5)
H17 −0.3177 1.2523 0.7398 0.027*
C18 −0.21795 (15) 1.18082 (16) 0.6403 (3) 0.0212 (5)
H18 −0.1947 1.2351 0.5893 0.025*
C19 0.14483 (15) 0.87441 (15) 0.3012 (3) 0.0211 (4)
H19 0.0847 0.8651 0.2608 0.025*
C20 0.21321 (15) 0.84930 (16) 0.2050 (3) 0.0210 (5)
H20 0.1999 0.8204 0.1017 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0193 (8) 0.0298 (8) 0.0200 (8) 0.0002 (7) 0.0046 (6) −0.0030 (7)
O2 0.0206 (8) 0.0230 (8) 0.0234 (8) 0.0035 (6) 0.0065 (6) 0.0007 (7)
N1 0.0184 (9) 0.0230 (10) 0.0213 (9) 0.0036 (7) 0.0079 (7) 0.0040 (7)
N2 0.0155 (9) 0.0244 (9) 0.0221 (9) 0.0012 (7) 0.0073 (7) 0.0001 (8)
C1 0.0303 (14) 0.0420 (14) 0.0229 (12) −0.0006 (11) 0.0049 (10) 0.0029 (11)
C2 0.0195 (11) 0.0408 (14) 0.0199 (11) 0.0031 (9) 0.0054 (9) −0.0002 (10)
C3 0.0264 (12) 0.0311 (12) 0.0214 (10) 0.0085 (9) 0.0061 (9) −0.0001 (10)
C4 0.0249 (11) 0.0263 (11) 0.0202 (10) 0.0001 (9) 0.0063 (8) −0.0031 (9)
C5 0.0186 (10) 0.0174 (10) 0.0202 (10) 0.0021 (8) 0.0046 (8) 0.0019 (8)
C6 0.0170 (10) 0.0211 (11) 0.0210 (11) 0.0005 (8) −0.0011 (8) 0.0020 (8)
C7 0.0200 (11) 0.0159 (10) 0.0215 (11) 0.0030 (8) 0.0012 (9) −0.0002 (8)
C8 0.0173 (11) 0.0150 (9) 0.0228 (11) 0.0021 (7) 0.0061 (8) 0.0030 (8)
C9 0.0169 (10) 0.0164 (10) 0.0247 (11) −0.0017 (8) 0.0070 (8) −0.0005 (8)
C10 0.0187 (10) 0.0179 (10) 0.0209 (10) −0.0005 (8) 0.0045 (8) −0.0008 (8)
C11 0.0161 (10) 0.0215 (10) 0.0162 (10) 0.0014 (8) 0.0020 (8) −0.0004 (9)
C12 0.0207 (11) 0.0180 (11) 0.0263 (11) 0.0029 (8) 0.0021 (8) 0.0023 (9)
C13 0.0186 (10) 0.0249 (11) 0.0259 (11) 0.0003 (9) 0.0033 (9) 0.0044 (9)
C14 0.0171 (10) 0.0317 (12) 0.0167 (10) 0.0012 (9) 0.0025 (8) −0.0017 (9)
C15 0.0213 (12) 0.0370 (14) 0.0313 (13) 0.0036 (10) 0.0075 (10) −0.0024 (11)
C16 0.0295 (12) 0.0216 (11) 0.0275 (12) 0.0023 (9) 0.0114 (10) 0.0033 (9)
C17 0.0203 (11) 0.0217 (11) 0.0252 (11) 0.0045 (8) 0.0023 (9) −0.0032 (9)
C18 0.0232 (11) 0.0188 (10) 0.0218 (11) 0.0006 (8) 0.0031 (9) 0.0014 (9)
C19 0.0152 (10) 0.0211 (10) 0.0270 (11) −0.0007 (8) 0.0018 (8) 0.0009 (9)
C20 0.0214 (11) 0.0238 (11) 0.0181 (10) −0.0002 (8) 0.0046 (8) −0.0009 (9)

Geometric parameters (Å, º)

O1—C5 1.363 (3) C8—C19 1.393 (3)
O1—C4 1.444 (3) C8—C9 1.492 (3)
O2—C9 1.229 (3) C10—C11 1.485 (3)
N1—C9 1.356 (3) C10—C16 1.498 (3)
N1—N2 1.390 (2) C11—C18 1.393 (3)
N1—H1 0.8800 C11—C12 1.403 (3)
N2—C10 1.286 (3) C12—C13 1.390 (3)
C1—C2 1.522 (3) C12—H12 0.9500
C1—H1A 0.9800 C13—C14 1.388 (3)
C1—H1B 0.9800 C13—H13 0.9500
C1—H1C 0.9800 C14—C17 1.387 (3)
C2—C3 1.519 (4) C14—C15 1.511 (3)
C2—H2A 0.9900 C15—H15A 0.9800
C2—H2B 0.9900 C15—H15B 0.9800
C3—C4 1.512 (3) C15—H15C 0.9800
C3—H3A 0.9900 C16—H16A 0.9800
C3—H3B 0.9900 C16—H16B 0.9800
C4—H4A 0.9900 C16—H16C 0.9800
C4—H4B 0.9900 C17—C18 1.390 (3)
C5—C20 1.386 (3) C17—H17 0.9500
C5—C6 1.400 (3) C18—H18 0.9500
C6—C7 1.383 (3) C19—C20 1.396 (3)
C6—H6 0.9500 C19—H19 0.9500
C7—C8 1.396 (3) C20—H20 0.9500
C7—H7 0.9500
C5—O1—C4 117.82 (17) O2—C9—C8 122.15 (19)
C9—N1—N2 117.58 (17) N1—C9—C8 114.14 (19)
C9—N1—H1 121.2 N2—C10—C11 115.23 (19)
N2—N1—H1 121.2 N2—C10—C16 124.9 (2)
C10—N2—N1 116.62 (18) C11—C10—C16 119.86 (19)
C2—C1—H1A 109.5 C18—C11—C12 118.0 (2)
C2—C1—H1B 109.5 C18—C11—C10 121.8 (2)
H1A—C1—H1B 109.5 C12—C11—C10 120.24 (19)
C2—C1—H1C 109.5 C13—C12—C11 120.5 (2)
H1A—C1—H1C 109.5 C13—C12—H12 119.8
H1B—C1—H1C 109.5 C11—C12—H12 119.8
C3—C2—C1 112.9 (2) C14—C13—C12 121.2 (2)
C3—C2—H2A 109.0 C14—C13—H13 119.4
C1—C2—H2A 109.0 C12—C13—H13 119.4
C3—C2—H2B 109.0 C17—C14—C13 118.4 (2)
C1—C2—H2B 109.0 C17—C14—C15 120.7 (2)
H2A—C2—H2B 107.8 C13—C14—C15 120.9 (2)
C4—C3—C2 114.7 (2) C14—C15—H15A 109.5
C4—C3—H3A 108.6 C14—C15—H15B 109.5
C2—C3—H3A 108.6 H15A—C15—H15B 109.5
C4—C3—H3B 108.6 C14—C15—H15C 109.5
C2—C3—H3B 108.6 H15A—C15—H15C 109.5
H3A—C3—H3B 107.6 H15B—C15—H15C 109.5
O1—C4—C3 106.59 (19) C10—C16—H16A 109.5
O1—C4—H4A 110.4 C10—C16—H16B 109.5
C3—C4—H4A 110.4 H16A—C16—H16B 109.5
O1—C4—H4B 110.4 C10—C16—H16C 109.5
C3—C4—H4B 110.4 H16A—C16—H16C 109.5
H4A—C4—H4B 108.6 H16B—C16—H16C 109.5
O1—C5—C20 125.24 (19) C14—C17—C18 120.9 (2)
O1—C5—C6 114.95 (19) C14—C17—H17 119.5
C20—C5—C6 119.81 (19) C18—C17—H17 119.5
C7—C6—C5 120.5 (2) C17—C18—C11 121.0 (2)
C7—C6—H6 119.7 C17—C18—H18 119.5
C5—C6—H6 119.7 C11—C18—H18 119.5
C6—C7—C8 120.0 (2) C8—C19—C20 120.8 (2)
C6—C7—H7 120.0 C8—C19—H19 119.6
C8—C7—H7 120.0 C20—C19—H19 119.6
C19—C8—C7 119.36 (19) C5—C20—C19 119.5 (2)
C19—C8—C9 122.27 (19) C5—C20—H20 120.3
C7—C8—C9 118.4 (2) C19—C20—H20 120.3
O2—C9—N1 123.69 (19)
C9—N1—N2—C10 158.6 (2) N2—C10—C11—C18 155.7 (2)
C1—C2—C3—C4 −68.9 (3) C16—C10—C11—C18 −22.4 (3)
C5—O1—C4—C3 −169.15 (18) N2—C10—C11—C12 −23.3 (3)
C2—C3—C4—O1 −65.7 (3) C16—C10—C11—C12 158.6 (2)
C4—O1—C5—C20 −10.6 (3) C18—C11—C12—C13 −2.9 (3)
C4—O1—C5—C6 168.89 (18) C10—C11—C12—C13 176.1 (2)
O1—C5—C6—C7 −178.39 (19) C11—C12—C13—C14 1.3 (4)
C20—C5—C6—C7 1.1 (3) C12—C13—C14—C17 0.8 (3)
C5—C6—C7—C8 −2.8 (3) C12—C13—C14—C15 −178.6 (2)
C6—C7—C8—C19 1.6 (3) C13—C14—C17—C18 −1.3 (3)
C6—C7—C8—C9 −179.34 (19) C15—C14—C17—C18 178.1 (2)
N2—N1—C9—O2 −9.6 (3) C14—C17—C18—C11 −0.4 (3)
N2—N1—C9—C8 171.93 (18) C12—C11—C18—C17 2.4 (3)
C19—C8—C9—O2 130.8 (2) C10—C11—C18—C17 −176.6 (2)
C7—C8—C9—O2 −48.2 (3) C7—C8—C19—C20 1.2 (3)
C19—C8—C9—N1 −50.6 (3) C9—C8—C19—C20 −177.8 (2)
C7—C8—C9—N1 130.3 (2) O1—C5—C20—C19 −178.9 (2)
N1—N2—C10—C11 176.57 (18) C6—C5—C20—C19 1.7 (3)
N1—N2—C10—C16 −5.4 (3) C8—C19—C20—C5 −2.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.88 2.15 2.975 (2) 155
C16—H16C···O2i 0.98 2.57 3.307 (3) 131
C17—H17···O2ii 0.95 2.59 3.527 (3) 168

Symmetry codes: (i) x, −y+2, z−1/2; (ii) x−1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2373).

References

  1. Barbazan, P., Carballo, R., Covelo, B., Lodeiro, C., Lima, J. C. & Vazquez-Lopez, E. M. (2008). Eur. J. Inorg. Chem. pp. 2713–2720.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chimenti, F., Maccioni, E., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Cardia, M. C. & Distinto, S. (2007). J. Med. Chem. 50, 707–712. [DOI] [PubMed]
  5. Dang, T. T., Dang, T. T. & Langer, P. (2007). Tetrahedron Lett. 48, 3591–3593.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Gup, R. & Kirkan, B. (2005). Spectrochim. Acta A, 62, 1188–1195. [DOI] [PubMed]
  9. Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876. [DOI] [PMC free article] [PubMed]
  10. Mao, F.-L., Li, W.-S. & Zhou, X.-P. (2011). Acta Cryst. E67, o2547.
  11. Naskar, S., Biswas, S., Mishra, D., Adhikary, B., Falvello, L. R., Soler, T., Schwalbe, C. H. & Chattopadhyay, S. K. (2004). Inorg. Chim. Acta 357, 4257–4264.
  12. Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 8, 1910–1939. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172. [DOI] [PMC free article] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Sreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2003). Polyhedron, 23, 575–581.
  17. Vicini, P., Incerti, M., Doytchinova, I. A., Colla, P., Busonera, B. & Loddo, R. (2006). Eur. J. Med. Chem. 41, 624–632. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536812035921/bq2373sup1.cif

e-68-o2763-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035921/bq2373Isup2.hkl

e-68-o2763-Isup2.hkl (105.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812035921/bq2373Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES