Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 25;68(Pt 9):o2764. doi: 10.1107/S1600536812036239

Diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate)

Hong-Shun Sun a,*, Yu-Long Li a, Ning Xu a, Hong Xu a, Ji-Dong Zhang a
PMCID: PMC3435799  PMID: 22969645

Abstract

In the title compound, C29H26N2O4, the benzene ring is twisted by 73.5 (5) and 84.9 (3)° with respect to the mean planes of the two indole ring systems; the mean planes of the indole ring systems are oriented at a dihedral angle of 82.0 (5)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into chains.

Related literature  

For applications of indole derivatives, see: Poter et al. (1977); Sundberg (1996); Chang et al. (1999); Ge et al. (1999); Ni (2008).graphic file with name e-68-o2764-scheme1.jpg

Experimental  

Crystal data  

  • C29H26N2O4

  • M r = 466.52

  • Triclinic, Inline graphic

  • a = 8.7340 (17) Å

  • b = 9.871 (2) Å

  • c = 15.000 (3) Å

  • α = 76.14 (3)°

  • β = 83.91 (3)°

  • γ = 83.09 (3)°

  • V = 1242.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • 4879 measured reflections

  • 4557 independent reflections

  • 2813 reflections with I > 2σ(I)

  • R int = 0.032

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.144

  • S = 1.00

  • 4557 reflections

  • 316 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036239/xu5612sup1.cif

e-68-o2764-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036239/xu5612Isup2.hkl

e-68-o2764-Isup2.hkl (223.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036239/xu5612Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.21 2.955 (3) 144
N2—H2A⋯O4ii 0.86 2.07 2.880 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for assistance with the data collection.

supplementary crystallographic information

Comment

Indole derivatives are found abundantly in a variety of natural plants and exhibit various physiological properties (Poter et al., 1977; Sundberg, 1996). Among them, bis-indolymethane derivatives are found to be kinds of potentially bioactive compounds (Chang et al., 1999; Ge et al., 1999). In recent years, the synthesis and application of bis-indolymethane derivatives have been widely studied. The title compound is one of bis-indolymethane derivatives as a precursor for MRI Contrast Agents (Ni, 2008). We report here its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The benzene ring is twisted to the two indole rings with the dihedral angles of 73.5 (5) and 84.9 (3)°, respectively. Two indole rings make a dihedral angle of 82.0 (5)° to each other.

As shown in Figure 2, the molecules are linked by paired N—H···O hydrogen bonds into dimers in the crystal lattice. The structural parameters for the intermolecular hydrogen bonds resulting in the formation of dimers are given in Table 1.

Experimental

Ethyl indole-2-carboxylate (18.9 g, 100 mmol) was dissolved in 200 ml ethanol; commercially available benzaldehyde (5.3 g, 50 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling the white product was filtered off and washed thoroughly with ethanol. The reaction can be followed by TLC (CHCl3:hexane = 1:1). Yield was 90%. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with N— H = 0.86 Å and C—H = 0.93, 0.96, 0.97 and 0.98 Å for aromatic, methyl, methylene and methine H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C29H26N2O4 Z = 2
Mr = 466.52 F(000) = 492
Triclinic, P1 Dx = 1.247 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.7340 (17) Å Cell parameters from 25 reflections
b = 9.871 (2) Å θ = 9–13°
c = 15.000 (3) Å µ = 0.08 mm1
α = 76.14 (3)° T = 293 K
β = 83.91 (3)° Block, colorless
γ = 83.09 (3)° 0.30 × 0.20 × 0.10 mm
V = 1242.4 (4) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.032
Radiation source: fine-focus sealed tube θmax = 25.4°, θmin = 1.4°
Graphite monochromator h = 0→10
ω/2θ scans k = −11→11
4879 measured reflections l = −17→18
4557 independent reflections 3 standard reflections every 200 reflections
2813 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.068P)2] where P = (Fo2 + 2Fc2)/3
4557 reflections (Δ/σ)max < 0.001
316 parameters Δρmax = 0.33 e Å3
2 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1091 (2) 1.1102 (2) 0.57403 (13) 0.0464 (5)
H1A 0.0562 1.1030 0.5305 0.056*
O1 0.3652 (2) 0.79594 (18) 0.61548 (14) 0.0671 (6)
C1 0.0036 (3) 1.3484 (3) 0.59245 (18) 0.0543 (7)
H1B −0.0653 1.3654 0.5469 0.065*
N2 0.3177 (2) 0.6564 (2) 0.93548 (13) 0.0455 (5)
H2A 0.3453 0.5760 0.9700 0.055*
O2 0.1783 (2) 0.8636 (2) 0.51907 (13) 0.0684 (6)
C2 0.0155 (3) 1.4450 (3) 0.64135 (19) 0.0622 (8)
H2B −0.0449 1.5305 0.6283 0.075*
O3 0.65528 (18) 0.75379 (17) 0.78745 (11) 0.0501 (5)
C3 0.1166 (3) 1.4189 (3) 0.71086 (19) 0.0617 (8)
H3A 0.1214 1.4872 0.7435 0.074*
O4 0.6289 (2) 0.57275 (18) 0.90776 (13) 0.0650 (6)
C4 0.2091 (3) 1.2949 (3) 0.73230 (18) 0.0556 (7)
H4A 0.2753 1.2789 0.7791 0.067*
C5 0.2020 (3) 1.1927 (2) 0.68248 (15) 0.0408 (6)
C6 0.0979 (3) 1.2226 (3) 0.61280 (16) 0.0451 (6)
C7 0.2770 (3) 1.0539 (2) 0.68458 (15) 0.0384 (6)
C8 0.2186 (3) 1.0099 (2) 0.61581 (15) 0.0402 (6)
C9 0.2502 (3) 0.8841 (3) 0.57918 (18) 0.0491 (6)
C10 0.4101 (4) 0.6726 (3) 0.5781 (3) 0.0934 (12)
H10A 0.3348 0.6054 0.6016 0.112*
H10B 0.4081 0.6996 0.5116 0.112*
C11 0.5551 (5) 0.6089 (5) 0.5996 (4) 0.1460 (19)
H11A 0.5781 0.5285 0.5733 0.219*
H11B 0.5575 0.5800 0.6653 0.219*
H11C 0.6308 0.6740 0.5752 0.219*
C12 0.3962 (3) 0.9705 (2) 0.74867 (15) 0.0373 (6)
H12A 0.4708 0.9217 0.7106 0.045*
C13 0.4886 (3) 1.0644 (2) 0.78505 (16) 0.0395 (6)
C14 0.6008 (3) 1.1351 (3) 0.72766 (19) 0.0568 (7)
H14A 0.6244 1.1202 0.6686 0.068*
C15 0.6790 (4) 1.2282 (3) 0.7569 (3) 0.0764 (9)
H15A 0.7541 1.2759 0.7170 0.092*
C16 0.6473 (4) 1.2511 (3) 0.8438 (2) 0.0710 (9)
H16A 0.6991 1.3154 0.8624 0.085*
C17 0.5397 (3) 1.1794 (3) 0.9029 (2) 0.0611 (8)
H17A 0.5190 1.1934 0.9623 0.073*
C18 0.4605 (3) 1.0849 (3) 0.87424 (17) 0.0478 (6)
H18A 0.3882 1.0350 0.9151 0.057*
C19 0.3294 (3) 0.8562 (2) 0.82476 (15) 0.0374 (6)
C20 0.1766 (3) 0.8539 (2) 0.87173 (15) 0.0395 (6)
C21 0.0399 (3) 0.9474 (3) 0.86615 (18) 0.0511 (7)
H21A 0.0363 1.0322 0.8226 0.061*
C22 −0.0862 (3) 0.9119 (3) 0.92517 (19) 0.0619 (8)
H22A −0.1757 0.9738 0.9214 0.074*
C23 −0.0847 (3) 0.7852 (3) 0.9912 (2) 0.0632 (8)
H23A −0.1734 0.7642 1.0298 0.076*
C24 0.0448 (3) 0.6912 (3) 1.00012 (17) 0.0527 (7)
H24A 0.0464 0.6071 1.0443 0.063*
C25 0.1743 (3) 0.7277 (2) 0.93981 (16) 0.0426 (6)
C26 0.4107 (3) 0.7330 (2) 0.86766 (15) 0.0388 (6)
C27 0.5734 (3) 0.6772 (2) 0.85723 (16) 0.0402 (6)
C28 0.8177 (3) 0.7041 (3) 0.77442 (18) 0.0553 (7)
H28A 0.8282 0.6102 0.7638 0.066*
H28B 0.8701 0.7019 0.8287 0.066*
C29 0.8863 (3) 0.8028 (3) 0.6932 (2) 0.0802 (10)
H29A 0.9940 0.7727 0.6825 0.120*
H29B 0.8759 0.8952 0.7048 0.120*
H29C 0.8335 0.8044 0.6400 0.120*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0488 (13) 0.0511 (13) 0.0378 (11) 0.0003 (10) −0.0143 (10) −0.0049 (10)
O1 0.0723 (14) 0.0525 (12) 0.0859 (14) 0.0166 (10) −0.0364 (11) −0.0322 (10)
C1 0.0510 (16) 0.0538 (17) 0.0462 (15) 0.0093 (13) −0.0099 (13) 0.0071 (13)
N2 0.0469 (13) 0.0359 (11) 0.0461 (12) 0.0014 (10) −0.0069 (10) 0.0039 (9)
O2 0.0705 (13) 0.0795 (14) 0.0662 (13) 0.0077 (11) −0.0280 (11) −0.0355 (11)
C2 0.067 (2) 0.0520 (17) 0.0555 (18) 0.0173 (15) −0.0037 (15) −0.0005 (15)
O3 0.0440 (10) 0.0501 (10) 0.0468 (10) 0.0059 (8) −0.0009 (8) 0.0007 (8)
C3 0.076 (2) 0.0451 (16) 0.0604 (18) 0.0116 (15) −0.0099 (16) −0.0114 (13)
O4 0.0580 (12) 0.0507 (11) 0.0675 (12) 0.0134 (9) −0.0037 (10) 0.0132 (10)
C4 0.0693 (19) 0.0456 (16) 0.0508 (16) 0.0055 (14) −0.0184 (14) −0.0086 (13)
C5 0.0446 (14) 0.0399 (14) 0.0320 (13) 0.0002 (11) −0.0026 (11) 0.0008 (11)
C6 0.0468 (15) 0.0456 (15) 0.0356 (14) −0.0011 (12) −0.0037 (11) 0.0032 (11)
C7 0.0397 (13) 0.0400 (13) 0.0317 (12) 0.0015 (11) −0.0049 (11) −0.0030 (10)
C8 0.0442 (14) 0.0384 (13) 0.0361 (13) 0.0003 (11) −0.0100 (11) −0.0040 (11)
C9 0.0489 (16) 0.0536 (16) 0.0442 (15) −0.0016 (13) −0.0104 (13) −0.0088 (13)
C10 0.098 (3) 0.060 (2) 0.138 (3) 0.0167 (19) −0.046 (2) −0.050 (2)
C11 0.123 (4) 0.135 (4) 0.200 (5) 0.021 (3) −0.042 (4) −0.082 (4)
C12 0.0407 (14) 0.0348 (13) 0.0353 (13) 0.0057 (11) −0.0102 (11) −0.0073 (10)
C13 0.0398 (14) 0.0362 (13) 0.0390 (14) 0.0037 (11) −0.0102 (11) −0.0026 (11)
C14 0.0574 (17) 0.0537 (17) 0.0561 (17) −0.0123 (14) 0.0014 (14) −0.0055 (14)
C15 0.069 (2) 0.0589 (19) 0.097 (3) −0.0266 (17) 0.0001 (19) −0.0023 (18)
C16 0.074 (2) 0.0601 (19) 0.085 (2) −0.0156 (17) −0.0234 (19) −0.0172 (18)
C17 0.074 (2) 0.0598 (18) 0.0549 (17) −0.0035 (16) −0.0240 (16) −0.0178 (15)
C18 0.0524 (16) 0.0494 (15) 0.0412 (15) −0.0021 (13) −0.0084 (12) −0.0090 (12)
C19 0.0405 (14) 0.0338 (13) 0.0363 (13) 0.0004 (11) −0.0105 (11) −0.0036 (10)
C20 0.0413 (14) 0.0376 (13) 0.0379 (13) −0.0032 (11) −0.0069 (11) −0.0042 (10)
C21 0.0479 (16) 0.0469 (15) 0.0527 (16) 0.0056 (13) −0.0080 (13) −0.0034 (12)
C22 0.0407 (16) 0.0669 (19) 0.070 (2) 0.0074 (14) 0.0033 (15) −0.0103 (16)
C23 0.0467 (17) 0.071 (2) 0.0633 (19) −0.0068 (15) 0.0103 (14) −0.0054 (16)
C24 0.0485 (16) 0.0557 (17) 0.0483 (16) −0.0087 (14) −0.0017 (13) −0.0004 (13)
C25 0.0413 (14) 0.0420 (14) 0.0442 (14) −0.0024 (12) −0.0085 (12) −0.0080 (11)
C26 0.0444 (14) 0.0343 (13) 0.0343 (13) 0.0017 (11) −0.0066 (11) −0.0023 (10)
C27 0.0447 (15) 0.0333 (13) 0.0382 (13) 0.0012 (11) −0.0054 (12) −0.0014 (11)
C28 0.0501 (17) 0.0554 (17) 0.0543 (17) 0.0047 (13) 0.0025 (13) −0.0084 (13)
C29 0.065 (2) 0.082 (2) 0.088 (2) −0.0115 (18) 0.0150 (18) −0.0142 (19)

Geometric parameters (Å, º)

N1—C6 1.361 (3) C12—C13 1.524 (3)
N1—C8 1.375 (3) C12—H12A 0.9800
N1—H1A 0.8600 C13—C14 1.374 (3)
O1—C9 1.320 (3) C13—C18 1.392 (3)
O1—C10 1.455 (3) C14—C15 1.382 (4)
C1—C2 1.354 (4) C14—H14A 0.9300
C1—C6 1.393 (3) C15—C16 1.370 (4)
C1—H1B 0.9300 C15—H15A 0.9300
N2—C25 1.364 (3) C16—C17 1.362 (4)
N2—C26 1.368 (3) C16—H16A 0.9300
N2—H2A 0.8600 C17—C18 1.394 (3)
O2—C9 1.219 (3) C17—H17A 0.9300
C2—C3 1.394 (4) C18—H18A 0.9300
C2—H2B 0.9300 C19—C26 1.382 (3)
O3—C27 1.331 (3) C19—C20 1.442 (3)
O3—C28 1.453 (3) C20—C25 1.410 (3)
C3—C4 1.372 (3) C20—C21 1.415 (3)
C3—H3A 0.9300 C21—C22 1.363 (3)
O4—C27 1.207 (3) C21—H21A 0.9300
C4—C5 1.402 (3) C22—C23 1.397 (4)
C4—H4A 0.9300 C22—H22A 0.9300
C5—C6 1.413 (3) C23—C24 1.371 (4)
C5—C7 1.440 (3) C23—H23A 0.9300
C7—C8 1.375 (3) C24—C25 1.397 (3)
C7—C12 1.520 (3) C24—H24A 0.9300
C8—C9 1.460 (3) C26—C27 1.467 (3)
C10—C11 1.379 (4) C28—C29 1.486 (4)
C10—H10A 0.9700 C28—H28A 0.9700
C10—H10B 0.9700 C28—H28B 0.9700
C11—H11A 0.9600 C29—H29A 0.9600
C11—H11B 0.9600 C29—H29B 0.9600
C11—H11C 0.9600 C29—H29C 0.9600
C12—C19 1.522 (3)
C6—N1—C8 108.91 (19) C18—C13—C12 122.3 (2)
C6—N1—H1A 125.5 C13—C14—C15 120.6 (3)
C8—N1—H1A 125.5 C13—C14—H14A 119.7
C9—O1—C10 117.3 (2) C15—C14—H14A 119.7
C2—C1—C6 117.7 (3) C16—C15—C14 120.8 (3)
C2—C1—H1B 121.2 C16—C15—H15A 119.6
C6—C1—H1B 121.2 C14—C15—H15A 119.6
C25—N2—C26 109.28 (19) C17—C16—C15 119.7 (3)
C25—N2—H2A 125.4 C17—C16—H16A 120.2
C26—N2—H2A 125.4 C15—C16—H16A 120.2
C1—C2—C3 121.4 (3) C16—C17—C18 120.0 (3)
C1—C2—H2B 119.3 C16—C17—H17A 120.0
C3—C2—H2B 119.3 C18—C17—H17A 120.0
C27—O3—C28 116.10 (19) C13—C18—C17 120.6 (3)
C4—C3—C2 121.6 (3) C13—C18—H18A 119.7
C4—C3—H3A 119.2 C17—C18—H18A 119.7
C2—C3—H3A 119.2 C26—C19—C20 105.12 (19)
C3—C4—C5 119.0 (2) C26—C19—C12 125.5 (2)
C3—C4—H4A 120.5 C20—C19—C12 129.27 (19)
C5—C4—H4A 120.5 C25—C20—C21 117.3 (2)
C4—C5—C6 117.8 (2) C25—C20—C19 107.5 (2)
C4—C5—C7 135.3 (2) C21—C20—C19 135.2 (2)
C6—C5—C7 106.9 (2) C22—C21—C20 119.4 (2)
N1—C6—C1 129.3 (2) C22—C21—H21A 120.3
N1—C6—C5 108.1 (2) C20—C21—H21A 120.3
C1—C6—C5 122.6 (2) C21—C22—C23 121.8 (3)
C8—C7—C5 105.8 (2) C21—C22—H22A 119.1
C8—C7—C12 126.1 (2) C23—C22—H22A 119.1
C5—C7—C12 128.1 (2) C24—C23—C22 121.3 (3)
N1—C8—C7 110.2 (2) C24—C23—H23A 119.3
N1—C8—C9 116.0 (2) C22—C23—H23A 119.3
C7—C8—C9 133.8 (2) C23—C24—C25 116.9 (2)
O2—C9—O1 122.9 (3) C23—C24—H24A 121.5
O2—C9—C8 122.9 (2) C25—C24—H24A 121.5
O1—C9—C8 114.2 (2) N2—C25—C24 129.0 (2)
C11—C10—O1 113.3 (3) N2—C25—C20 107.6 (2)
C11—C10—H10A 108.9 C24—C25—C20 123.3 (2)
O1—C10—H10A 108.9 N2—C26—C19 110.4 (2)
C11—C10—H10B 108.9 N2—C26—C27 117.0 (2)
O1—C10—H10B 108.9 C19—C26—C27 132.5 (2)
H10A—C10—H10B 107.7 O4—C27—O3 122.8 (2)
C10—C11—H11A 109.5 O4—C27—C26 123.4 (2)
C10—C11—H11B 109.5 O3—C27—C26 113.7 (2)
H11A—C11—H11B 109.5 O3—C28—C29 107.3 (2)
C10—C11—H11C 109.5 O3—C28—H28A 110.2
H11A—C11—H11C 109.5 C29—C28—H28A 110.2
H11B—C11—H11C 109.5 O3—C28—H28B 110.2
C7—C12—C19 113.36 (18) C29—C28—H28B 110.2
C7—C12—C13 112.51 (18) H28A—C28—H28B 108.5
C19—C12—C13 112.78 (18) C28—C29—H29A 109.5
C7—C12—H12A 105.8 C28—C29—H29B 109.5
C19—C12—H12A 105.8 H29A—C29—H29B 109.5
C13—C12—H12A 105.8 C28—C29—H29C 109.5
C14—C13—C18 118.2 (2) H29A—C29—H29C 109.5
C14—C13—C12 119.4 (2) H29B—C29—H29C 109.5
C6—C1—C2—C3 −1.2 (4) C13—C14—C15—C16 0.5 (5)
C1—C2—C3—C4 0.5 (4) C14—C15—C16—C17 1.3 (5)
C2—C3—C4—C5 0.4 (4) C15—C16—C17—C18 −1.1 (4)
C3—C4—C5—C6 −0.6 (4) C14—C13—C18—C17 2.8 (4)
C3—C4—C5—C7 −179.5 (3) C12—C13—C18—C17 −175.3 (2)
C8—N1—C6—C1 179.6 (2) C16—C17—C18—C13 −1.0 (4)
C8—N1—C6—C5 −0.8 (3) C7—C12—C19—C26 152.1 (2)
C2—C1—C6—N1 −179.6 (2) C13—C12—C19—C26 −78.6 (3)
C2—C1—C6—C5 0.9 (4) C7—C12—C19—C20 −32.3 (3)
C4—C5—C6—N1 −179.6 (2) C13—C12—C19—C20 97.0 (3)
C7—C5—C6—N1 −0.5 (3) C26—C19—C20—C25 −0.8 (2)
C4—C5—C6—C1 0.0 (4) C12—C19—C20—C25 −177.0 (2)
C7—C5—C6—C1 179.1 (2) C26—C19—C20—C21 176.8 (3)
C4—C5—C7—C8 −179.5 (3) C12—C19—C20—C21 0.5 (4)
C6—C5—C7—C8 1.6 (2) C25—C20—C21—C22 −0.5 (4)
C4—C5—C7—C12 0.6 (4) C19—C20—C21—C22 −177.8 (3)
C6—C5—C7—C12 −178.3 (2) C20—C21—C22—C23 −0.2 (4)
C6—N1—C8—C7 1.9 (3) C21—C22—C23—C24 0.7 (5)
C6—N1—C8—C9 −177.3 (2) C22—C23—C24—C25 −0.5 (4)
C5—C7—C8—N1 −2.2 (3) C26—N2—C25—C24 −178.0 (2)
C12—C7—C8—N1 177.8 (2) C26—N2—C25—C20 0.3 (3)
C5—C7—C8—C9 176.9 (3) C23—C24—C25—N2 177.9 (2)
C12—C7—C8—C9 −3.2 (4) C23—C24—C25—C20 −0.2 (4)
C10—O1—C9—O2 2.7 (4) C21—C20—C25—N2 −177.8 (2)
C10—O1—C9—C8 −176.1 (2) C19—C20—C25—N2 0.3 (3)
N1—C8—C9—O2 −4.4 (4) C21—C20—C25—C24 0.7 (4)
C7—C8—C9—O2 176.7 (3) C19—C20—C25—C24 178.7 (2)
N1—C8—C9—O1 174.4 (2) C25—N2—C26—C19 −0.8 (3)
C7—C8—C9—O1 −4.6 (4) C25—N2—C26—C27 175.8 (2)
C9—O1—C10—C11 162.2 (4) C20—C19—C26—N2 1.0 (3)
C8—C7—C12—C19 −76.6 (3) C12—C19—C26—N2 177.4 (2)
C5—C7—C12—C19 103.4 (3) C20—C19—C26—C27 −175.0 (2)
C8—C7—C12—C13 154.0 (2) C12—C19—C26—C27 1.5 (4)
C5—C7—C12—C13 −26.1 (3) C28—O3—C27—O4 0.4 (3)
C7—C12—C13—C14 −74.5 (3) C28—O3—C27—C26 179.4 (2)
C19—C12—C13—C14 155.7 (2) N2—C26—C27—O4 −3.8 (4)
C7—C12—C13—C18 103.5 (2) C19—C26—C27—O4 171.9 (3)
C19—C12—C13—C18 −26.2 (3) N2—C26—C27—O3 177.19 (19)
C18—C13—C14—C15 −2.5 (4) C19—C26—C27—O3 −7.1 (4)
C12—C13—C14—C15 175.6 (2) C27—O3—C28—C29 179.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 2.21 2.955 (3) 144
N2—H2A···O4ii 0.86 2.07 2.880 (3) 157

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5612).

References

  1. Chang, Y. C., Riby, J., Grace, H. F., Peng, G. F. & Bieldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834. [DOI] [PubMed]
  2. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  3. Ge, X., Fares, F. A. & Fares, S. Y. (1999). Anticancer Res. 19, 3199–3203. [PubMed]
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.
  6. Poter, J. K., Bacon, C. W., Robins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036239/xu5612sup1.cif

e-68-o2764-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036239/xu5612Isup2.hkl

e-68-o2764-Isup2.hkl (223.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036239/xu5612Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES