Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 25;68(Pt 9):o2766. doi: 10.1107/S1600536812036331

N-(2-Methyl­phen­yl)-4-nitro­benzene­sulfonamide

U Chaithanya a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3435801  PMID: 22969647

Abstract

In the title compound, C13H12N2O4S, the dihedral angle between the planes of the rings is 51.11 (10)°. In the crystal, mol­ecules are linked into inversion dimers through pairs of N—H⋯O(S) hydrogen bonds.

Related literature  

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Alkan et al. (2011); Bowes et al. (2003); Gowda & Weiss (1994); Saeed et al. (2010); Shahwar et al. (2012), of N-aryl­sulfonamides, see: Chaithanya et al. (2012); Gowda et al. (2005) and of N-chloro­aryl­sulfonamides, see: Gowda & Shetty (2004); Shetty & Gowda (2004).graphic file with name e-68-o2766-scheme1.jpg

Experimental  

Crystal data  

  • C13H12N2O4S

  • M r = 292.31

  • Monoclinic, Inline graphic

  • a = 14.106 (1) Å

  • b = 7.0082 (5) Å

  • c = 14.854 (2) Å

  • β = 110.84 (1)°

  • V = 1372.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.44 × 0.44 × 0.24 mm

Data collection  

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.898, T max = 0.942

  • 4889 measured reflections

  • 2781 independent reflections

  • 2198 reflections with I > 2σ(I)

  • R int = 0.016

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.119

  • S = 1.08

  • 2781 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036331/bt6824sup1.cif

e-68-o2766-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036331/bt6824Isup2.hkl

e-68-o2766-Isup2.hkl (136.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036331/bt6824Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.83 (2) 2.11 (2) 2.923 (2) 166 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

UC thanks Mangalore University for the award of a research fellowship. BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

supplementary crystallographic information

Comment

As a part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Alkan et al., 2011; Bowes et al., 2003; Gowda & Weiss, 1994; Saeed et al., 2010; Shahwar et al., 2012); N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2005) and N-chloroarylsulfonamides (Gowda & Shetty, 2004; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(2-methylphenyl)-4-nitrobenzenesulfonamide has been determined (Fig. 1).

The conformation of the N—C bond in the —SO2—NH—C segment has gauche torsion with respect to the S═O bonds (Fig.1). Further, the conformation of the N—H bond in the —SO2—NH— segment is syn to the ortho-methyl group in the anilino ring, compared to syn conformation observed between the N—H bond and ortho- nitro group in the sulfonyl benzene ring in N-(4-methylphenyl)-2-nitrobenzenesulfonamide (I) (Chaithanya et al., 2012). The molecule is twisted at the S—N bond with the torsional angle of -58.97 (21)°, compared to the value of 76.55 (18)° in (I).

The dihedral angle between the sulfonyl and the anilino rings is 51.11 (10)°, compared to the value of 72.64 (8)° in (I).

In the crystal structure, the pairs of intermolecular N–H···O (S) hydrogen bonds (Table 1) link the molecules into inversion dimers. Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared by treating 4-nitrobenzenesulfonylchloride with 2-methylaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(2-methylphenyl)-4-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point (429 K) from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like light brown single crystals of the title compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å. The coordinates of the amino H atom were freely refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) or 1.5 Ueq(C-methyl) of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C13H12N2O4S F(000) = 608
Mr = 292.31 Dx = 1.415 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2269 reflections
a = 14.106 (1) Å θ = 2.6–27.7°
b = 7.0082 (5) Å µ = 0.25 mm1
c = 14.854 (2) Å T = 293 K
β = 110.84 (1)° Prism, light brown
V = 1372.4 (2) Å3 0.44 × 0.44 × 0.24 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2781 independent reflections
Radiation source: fine-focus sealed tube 2198 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.016
Rotation method data acquisition using ω scans θmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −16→17
Tmin = 0.898, Tmax = 0.942 k = −8→8
4889 measured reflections l = −11→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.7236P] where P = (Fo2 + 2Fc2)/3
2781 reflections (Δ/σ)max < 0.001
185 parameters Δρmax = 0.19 e Å3
1 restraint Δρmin = −0.33 e Å3

Special details

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.16315 (4) 0.55405 (8) 0.49925 (4) 0.05191 (19)
O1 0.22495 (12) 0.6861 (2) 0.47241 (13) 0.0623 (4)
O2 0.11524 (13) 0.6116 (2) 0.56500 (13) 0.0680 (5)
O3 0.3815 (2) −0.2517 (4) 0.69841 (19) 0.1191 (9)
O4 0.45351 (17) −0.2122 (3) 0.59408 (18) 0.0960 (7)
N1 0.07213 (13) 0.4839 (3) 0.40317 (15) 0.0539 (5)
H1N 0.0239 (16) 0.439 (3) 0.4158 (18) 0.065*
N2 0.3977 (2) −0.1605 (4) 0.63546 (19) 0.0804 (7)
C1 0.23798 (16) 0.3504 (3) 0.54651 (16) 0.0493 (5)
C2 0.2147 (2) 0.2341 (4) 0.61097 (19) 0.0690 (7)
H2 0.1633 0.2678 0.6334 0.083*
C3 0.2686 (2) 0.0682 (4) 0.6414 (2) 0.0757 (8)
H3 0.2546 −0.0116 0.6852 0.091*
C4 0.34313 (18) 0.0224 (4) 0.60623 (17) 0.0613 (6)
C5 0.36773 (18) 0.1362 (4) 0.54339 (19) 0.0642 (6)
H5 0.4190 0.1012 0.5210 0.077*
C6 0.31531 (17) 0.3033 (4) 0.51386 (18) 0.0595 (6)
H6 0.3317 0.3845 0.4721 0.071*
C7 0.09202 (15) 0.3986 (3) 0.32411 (16) 0.0516 (5)
C8 0.06673 (17) 0.2084 (4) 0.30017 (18) 0.0605 (6)
C9 0.0841 (2) 0.1372 (5) 0.2200 (2) 0.0808 (9)
H9 0.0657 0.0121 0.2006 0.097*
C10 0.1274 (2) 0.2459 (7) 0.1691 (2) 0.0949 (11)
H10 0.1386 0.1938 0.1162 0.114*
C11 0.1544 (2) 0.4303 (6) 0.1948 (2) 0.0906 (11)
H11 0.1854 0.5027 0.1606 0.109*
C12 0.13538 (18) 0.5092 (5) 0.27233 (19) 0.0704 (7)
H12 0.1518 0.6360 0.2893 0.084*
C13 0.0228 (3) 0.0823 (4) 0.3571 (2) 0.0861 (9)
H13A −0.0455 0.1215 0.3468 0.129*
H13B 0.0631 0.0923 0.4243 0.129*
H13C 0.0227 −0.0476 0.3365 0.129*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0489 (3) 0.0462 (3) 0.0676 (4) −0.0081 (2) 0.0293 (3) −0.0158 (3)
O1 0.0589 (9) 0.0503 (9) 0.0836 (12) −0.0129 (7) 0.0325 (9) −0.0083 (8)
O2 0.0634 (10) 0.0686 (11) 0.0845 (12) −0.0109 (8) 0.0416 (9) −0.0321 (9)
O3 0.140 (2) 0.1042 (19) 0.0991 (18) 0.0273 (16) 0.0256 (16) 0.0432 (15)
O4 0.0757 (13) 0.0803 (14) 0.1144 (18) 0.0190 (11) 0.0122 (13) −0.0008 (13)
N1 0.0436 (10) 0.0542 (11) 0.0688 (12) −0.0043 (8) 0.0263 (9) −0.0118 (9)
N2 0.0741 (15) 0.0728 (16) 0.0712 (16) 0.0040 (13) −0.0026 (13) 0.0051 (13)
C1 0.0481 (11) 0.0503 (12) 0.0524 (12) −0.0083 (10) 0.0216 (10) −0.0114 (10)
C2 0.0742 (16) 0.0780 (18) 0.0681 (16) −0.0030 (14) 0.0418 (14) −0.0009 (14)
C3 0.0884 (19) 0.0779 (19) 0.0641 (16) −0.0036 (16) 0.0313 (15) 0.0141 (14)
C4 0.0569 (13) 0.0594 (14) 0.0550 (13) −0.0014 (11) 0.0044 (11) −0.0034 (11)
C5 0.0534 (13) 0.0703 (16) 0.0696 (16) 0.0039 (12) 0.0229 (12) 0.0001 (13)
C6 0.0533 (13) 0.0629 (14) 0.0695 (15) −0.0008 (11) 0.0306 (12) 0.0032 (12)
C7 0.0370 (10) 0.0633 (14) 0.0532 (12) 0.0069 (10) 0.0142 (9) −0.0045 (11)
C8 0.0497 (12) 0.0661 (15) 0.0635 (14) 0.0088 (11) 0.0174 (11) −0.0150 (12)
C9 0.0664 (16) 0.097 (2) 0.0754 (18) 0.0128 (16) 0.0213 (15) −0.0277 (17)
C10 0.0700 (18) 0.153 (4) 0.0624 (18) 0.019 (2) 0.0248 (15) −0.021 (2)
C11 0.0658 (17) 0.149 (4) 0.0614 (17) 0.002 (2) 0.0279 (14) 0.012 (2)
C12 0.0561 (14) 0.0890 (19) 0.0644 (15) 0.0011 (13) 0.0193 (12) 0.0088 (14)
C13 0.108 (2) 0.0572 (16) 0.102 (2) −0.0184 (16) 0.049 (2) −0.0244 (16)

Geometric parameters (Å, º)

S1—O1 1.4221 (16) C5—H5 0.9300
S1—O2 1.4292 (16) C6—H6 0.9300
S1—N1 1.620 (2) C7—C12 1.379 (3)
S1—C1 1.765 (2) C7—C8 1.393 (3)
O3—N2 1.220 (3) C8—C9 1.391 (3)
O4—N2 1.214 (3) C8—C13 1.501 (4)
N1—C7 1.431 (3) C9—C10 1.361 (5)
N1—H1N 0.830 (16) C9—H9 0.9300
N2—C4 1.479 (3) C10—C11 1.363 (5)
C1—C6 1.382 (3) C10—H10 0.9300
C1—C2 1.383 (3) C11—C12 1.387 (4)
C2—C3 1.375 (4) C11—H11 0.9300
C2—H2 0.9300 C12—H12 0.9300
C3—C4 1.369 (4) C13—H13A 0.9600
C3—H3 0.9300 C13—H13B 0.9600
C4—C5 1.363 (3) C13—H13C 0.9600
C5—C6 1.371 (3)
O1—S1—O2 119.61 (10) C5—C6—C1 119.7 (2)
O1—S1—N1 108.86 (11) C5—C6—H6 120.2
O2—S1—N1 105.57 (10) C1—C6—H6 120.2
O1—S1—C1 107.34 (10) C12—C7—C8 121.3 (2)
O2—S1—C1 108.52 (11) C12—C7—N1 118.6 (2)
N1—S1—C1 106.21 (10) C8—C7—N1 120.1 (2)
C7—N1—S1 121.63 (14) C9—C8—C7 117.0 (3)
C7—N1—H1N 116.3 (18) C9—C8—C13 120.3 (3)
S1—N1—H1N 111.9 (18) C7—C8—C13 122.6 (2)
O4—N2—O3 124.3 (3) C10—C9—C8 121.7 (3)
O4—N2—C4 118.3 (3) C10—C9—H9 119.2
O3—N2—C4 117.3 (3) C8—C9—H9 119.2
C6—C1—C2 120.9 (2) C9—C10—C11 120.7 (3)
C6—C1—S1 119.24 (18) C9—C10—H10 119.6
C2—C1—S1 119.75 (18) C11—C10—H10 119.6
C3—C2—C1 119.2 (2) C10—C11—C12 119.5 (3)
C3—C2—H2 120.4 C10—C11—H11 120.2
C1—C2—H2 120.4 C12—C11—H11 120.2
C4—C3—C2 118.8 (2) C7—C12—C11 119.6 (3)
C4—C3—H3 120.6 C7—C12—H12 120.2
C2—C3—H3 120.6 C11—C12—H12 120.2
C5—C4—C3 122.8 (2) C8—C13—H13A 109.5
C5—C4—N2 118.4 (2) C8—C13—H13B 109.5
C3—C4—N2 118.8 (3) H13A—C13—H13B 109.5
C4—C5—C6 118.6 (2) C8—C13—H13C 109.5
C4—C5—H5 120.7 H13A—C13—H13C 109.5
C6—C5—H5 120.7 H13B—C13—H13C 109.5
O1—S1—N1—C7 56.3 (2) C3—C4—C5—C6 −0.3 (4)
O2—S1—N1—C7 −174.08 (18) N2—C4—C5—C6 178.1 (2)
C1—S1—N1—C7 −59.0 (2) C4—C5—C6—C1 −1.3 (4)
O1—S1—C1—C6 −29.1 (2) C2—C1—C6—C5 2.0 (4)
O2—S1—C1—C6 −159.71 (18) S1—C1—C6—C5 −174.02 (19)
N1—S1—C1—C6 87.2 (2) S1—N1—C7—C12 −66.4 (3)
O1—S1—C1—C2 154.79 (19) S1—N1—C7—C8 114.3 (2)
O2—S1—C1—C2 24.2 (2) C12—C7—C8—C9 −2.1 (3)
N1—S1—C1—C2 −88.9 (2) N1—C7—C8—C9 177.3 (2)
C6—C1—C2—C3 −1.0 (4) C12—C7—C8—C13 177.8 (2)
S1—C1—C2—C3 175.0 (2) N1—C7—C8—C13 −2.9 (3)
C1—C2—C3—C4 −0.6 (4) C7—C8—C9—C10 2.4 (4)
C2—C3—C4—C5 1.2 (4) C13—C8—C9—C10 −177.5 (3)
C2—C3—C4—N2 −177.1 (2) C8—C9—C10—C11 −0.7 (5)
O4—N2—C4—C5 −8.4 (4) C9—C10—C11—C12 −1.5 (5)
O3—N2—C4—C5 173.3 (3) C8—C7—C12—C11 0.0 (4)
O4—N2—C4—C3 170.0 (3) N1—C7—C12—C11 −179.4 (2)
O3—N2—C4—C3 −8.2 (4) C10—C11—C12—C7 1.9 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.83 (2) 2.11 (2) 2.923 (2) 166 (2)

Symmetry code: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6824).

References

  1. Alkan, C., Tek, Y. & Kahraman, D. (2011). Turk. J. Chem. 35, 769–777.
  2. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  3. Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2745. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.
  5. Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  6. Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.
  7. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
  9. Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036331/bt6824sup1.cif

e-68-o2766-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036331/bt6824Isup2.hkl

e-68-o2766-Isup2.hkl (136.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036331/bt6824Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES