Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 25;68(Pt 9):o2774. doi: 10.1107/S1600536812034320

1-Eth­oxy-2-meth­oxy-4-[2-(4-nitro­phen­yl)ethen­yl]benzene

Paul M Dinakaran a, S Kalainathan a,*, T Srinivasan b, D Velmurugan b
PMCID: PMC3435807  PMID: 22969653

Abstract

In the title mol­ecule, C17H17NO4, the dihedral angle between the two aromatic rings is 42.47 (7)°. The nitro group is twisted by 7.44 (11)° out of the plane of the ring to which it is attached. The methoxy and ethoxy group O atoms deviate significantly from the phenyl ring [by 0.0108 (11) and 0.0449 (11) Å, respectively]. The crystal structure is stabilized by C—H⋯π inter­actions.

Related literature  

For the synthesis of the title compound, see: Tam et al. (1989). For hybridization, see: Beddoes et al. (1986)graphic file with name e-68-o2774-scheme1.jpg

Experimental  

Crystal data  

  • C17H17NO4

  • M r = 299.32

  • Monoclinic, Inline graphic

  • a = 8.5209 (4) Å

  • b = 7.5959 (4) Å

  • c = 23.7877 (13) Å

  • β = 99.611 (3)°

  • V = 1518.02 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART APEXII area-detector diffractometer

  • 14265 measured reflections

  • 3789 independent reflections

  • 2831 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.138

  • S = 1.04

  • 3789 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812034320/bt5986sup1.cif

e-68-o2774-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034320/bt5986Isup2.hkl

e-68-o2774-Isup2.hkl (182KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812034320/bt5986Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C9–C14 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17ACg2 0.97 2.96 3.281 (2) 145

Acknowledgments

TS and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for data collection and TS thanks DST for the Inspire fellowship. PMD and SK thank SERC–DST for providing financial support and VIT University management for their constant encouragement.

supplementary crystallographic information

Comment

The dihedral angle between nitro substituted phenyl ring (C1-C6) & oxygen substituted benzene ring (C9-C14) is 42.47 (7)°. The sum of bond angles around N1 (359.59°) is in accordance with sp2 hybridization (Beddoes et al., 1986). The methoxy and ethoxy group O3 and O4 atoms are significantly deviated from the phenyl ring (C9–C13) with the values of -0.0108 (11) Å and -0.0449 (11) Å, respectively.

A weak intermolecular C—H···π interaction involving the C17–H17A group and the C9–C14 benzene ring (centroid Cg2) of the molecule at (2-x,-y,-z) is observed [H17A···Cg2 = 2.96 Å, C17···Cg2 = 3.781 (2) Å and C17-H17A···Cg2 = 145°].

Experimental

4-Ethoxy 3-Methoxy 4-Nitrostilbene (4E3MONS) is a derivative material of stilebene.The material (4E3MONS) was synthesized by Witting reaction method. The material was prepared from the 4-ethoxy 3-methoxy benzaldehyde and diethyl p-nitrobenzyl phosphonate in the presence of sodium ethoxide catalyst. The steps involved during the chemical reactions are as follows: the calculated amount of diethyl p-nitrobenzyl phosphonate (0.01 mol %, 2.2304ml) and 4-ethoxy 3-methoxy benzaldehyde (0.01 mol, 1.802 ml %) were added in the ethanol solution (35 ml). After the reaction process, the sodium ethoxide,which plays a role of catalyst, was added immediately the colour of the solution became red. Then the mixture was stirred for 12 hrs at ice cold temperature in ultracryostat which has stirrer rotation facility. After the stirring process completed, the orange colour 4E3MONS material was collected from the mixture by removing the ethanol (Tam et al., 1989). Then the 4E3MONS was purified by a successive recrystallization process.

Refinement

Hydrogen atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding model with fixed isotropic displacement parameter: Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···N and C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y -1, - z; (ii) - x +1/2, y - 1/2, - z + 1/2.]

Crystal data

C17H17NO4 F(000) = 632
Mr = 299.32 Dx = 1.310 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3789 reflections
a = 8.5209 (4) Å θ = 1.7–28.5°
b = 7.5959 (4) Å µ = 0.09 mm1
c = 23.7877 (13) Å T = 293 K
β = 99.611 (3)° Block, colourless
V = 1518.02 (14) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer 2831 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.031
Graphite monochromator θmax = 28.5°, θmin = 1.7°
ω and φ scans h = −11→11
14265 measured reflections k = −9→9
3789 independent reflections l = −31→30

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.2742P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3789 reflections Δρmax = 0.22 e Å3
202 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.121 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O4 1.09886 (11) 0.13016 (14) 0.06184 (5) 0.0622 (3)
O3 0.89997 (12) 0.38803 (13) 0.04273 (5) 0.0619 (3)
C9 0.70663 (15) 0.13692 (18) 0.14525 (6) 0.0488 (3)
C13 0.86351 (14) 0.26322 (17) 0.07949 (5) 0.0468 (3)
C4 0.42645 (15) 0.09455 (17) 0.25675 (6) 0.0469 (3)
N1 0.04474 (16) 0.11093 (17) 0.34984 (6) 0.0644 (4)
C1 0.17789 (16) 0.10582 (17) 0.31788 (6) 0.0508 (3)
C8 0.57030 (15) 0.15205 (19) 0.17555 (6) 0.0512 (3)
H8 0.4829 0.2161 0.1578 0.061*
C14 0.73211 (14) 0.26748 (18) 0.10663 (5) 0.0478 (3)
H14 0.6594 0.3592 0.0990 0.057*
C6 0.14936 (16) 0.14921 (19) 0.26099 (6) 0.0545 (3)
H6 0.0478 0.1812 0.2432 0.065*
C10 0.81278 (17) −0.0027 (2) 0.15429 (7) 0.0584 (4)
H10 0.7962 −0.0925 0.1792 0.070*
C5 0.27400 (16) 0.14451 (19) 0.23074 (6) 0.0529 (3)
H5 0.2561 0.1752 0.1924 0.063*
C12 0.97140 (15) 0.12289 (18) 0.08991 (6) 0.0496 (3)
C11 0.94367 (16) −0.0096 (2) 0.12641 (7) 0.0583 (4)
H11 1.0131 −0.1048 0.1325 0.070*
C7 0.56122 (15) 0.08254 (19) 0.22582 (6) 0.0538 (3)
H7 0.6494 0.0195 0.2434 0.065*
O1 −0.08925 (15) 0.13496 (19) 0.32390 (7) 0.0886 (4)
C3 0.44945 (16) 0.0507 (2) 0.31410 (6) 0.0556 (3)
H3 0.5502 0.0165 0.3321 0.067*
C16 1.20153 (17) −0.0197 (2) 0.06557 (7) 0.0630 (4)
H16A 1.1425 −0.1227 0.0499 0.076*
H16B 1.2462 −0.0435 0.1051 0.076*
C2 0.32634 (17) 0.0564 (2) 0.34522 (6) 0.0579 (4)
H2 0.3435 0.0274 0.3837 0.070*
C17 1.33198 (18) 0.0214 (3) 0.03219 (8) 0.0733 (5)
H17A 1.2867 0.0416 −0.0070 0.110*
H17B 1.4046 −0.0759 0.0347 0.110*
H17C 1.3880 0.1250 0.0476 0.110*
C15 0.7940 (2) 0.5327 (2) 0.03028 (7) 0.0693 (4)
H15A 0.6912 0.4905 0.0128 0.104*
H15B 0.8345 0.6119 0.0047 0.104*
H15C 0.7848 0.5935 0.0650 0.104*
O2 0.07343 (17) 0.0848 (2) 0.40088 (6) 0.1057 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O4 0.0506 (5) 0.0632 (6) 0.0811 (7) 0.0073 (4) 0.0349 (5) 0.0034 (5)
O3 0.0615 (6) 0.0597 (6) 0.0727 (7) 0.0083 (5) 0.0347 (5) 0.0121 (5)
C9 0.0411 (6) 0.0529 (7) 0.0553 (7) −0.0035 (5) 0.0169 (5) −0.0032 (6)
C13 0.0448 (6) 0.0474 (7) 0.0511 (7) −0.0029 (5) 0.0167 (5) −0.0033 (5)
C4 0.0443 (6) 0.0456 (7) 0.0534 (7) −0.0031 (5) 0.0155 (5) 0.0005 (5)
N1 0.0640 (8) 0.0611 (8) 0.0759 (9) −0.0142 (6) 0.0349 (7) −0.0055 (6)
C1 0.0525 (7) 0.0461 (7) 0.0592 (8) −0.0081 (5) 0.0247 (6) −0.0038 (6)
C8 0.0429 (6) 0.0531 (7) 0.0611 (8) 0.0003 (5) 0.0190 (6) 0.0011 (6)
C14 0.0426 (6) 0.0496 (7) 0.0540 (7) 0.0011 (5) 0.0159 (5) −0.0040 (6)
C6 0.0465 (7) 0.0549 (8) 0.0647 (9) 0.0044 (6) 0.0169 (6) 0.0081 (6)
C10 0.0531 (7) 0.0541 (8) 0.0730 (10) 0.0013 (6) 0.0252 (7) 0.0095 (7)
C5 0.0496 (7) 0.0595 (8) 0.0522 (7) 0.0033 (6) 0.0157 (6) 0.0090 (6)
C12 0.0411 (6) 0.0530 (7) 0.0586 (8) −0.0017 (5) 0.0195 (5) −0.0055 (6)
C11 0.0496 (7) 0.0528 (8) 0.0770 (10) 0.0071 (6) 0.0234 (7) 0.0046 (7)
C7 0.0420 (6) 0.0619 (8) 0.0594 (8) 0.0016 (6) 0.0145 (6) 0.0035 (7)
O1 0.0603 (7) 0.1011 (10) 0.1138 (10) 0.0131 (7) 0.0422 (7) 0.0163 (8)
C3 0.0479 (7) 0.0656 (9) 0.0531 (8) −0.0037 (6) 0.0082 (6) 0.0046 (7)
C16 0.0515 (7) 0.0690 (10) 0.0734 (10) 0.0109 (7) 0.0250 (7) −0.0059 (8)
C2 0.0604 (8) 0.0668 (9) 0.0485 (7) −0.0102 (7) 0.0143 (6) 0.0016 (6)
C17 0.0513 (8) 0.0977 (13) 0.0768 (11) 0.0075 (8) 0.0276 (7) −0.0102 (9)
C15 0.0742 (10) 0.0692 (10) 0.0708 (10) 0.0166 (8) 0.0301 (8) 0.0191 (8)
O2 0.0873 (9) 0.1721 (16) 0.0668 (8) −0.0343 (10) 0.0395 (7) −0.0100 (9)

Geometric parameters (Å, º)

O4—C12 1.3678 (14) C6—C5 1.3791 (18)
O4—C16 1.4296 (17) C6—H6 0.9300
O3—C13 1.3605 (16) C10—C11 1.3905 (18)
O3—C15 1.4218 (18) C10—H10 0.9300
C9—C10 1.3871 (19) C5—H5 0.9300
C9—C14 1.3933 (19) C12—C11 1.375 (2)
C9—C8 1.4702 (17) C11—H11 0.9300
C13—C14 1.3831 (16) C7—H7 0.9300
C13—C12 1.4024 (18) C3—C2 1.3818 (19)
C4—C3 1.386 (2) C3—H3 0.9300
C4—C5 1.3950 (18) C16—C17 1.503 (2)
C4—C7 1.4664 (18) C16—H16A 0.9700
N1—O2 1.2141 (19) C16—H16B 0.9700
N1—O1 1.2175 (19) C2—H2 0.9300
N1—C1 1.4678 (17) C17—H17A 0.9600
C1—C2 1.375 (2) C17—H17B 0.9600
C1—C6 1.375 (2) C17—H17C 0.9600
C8—C7 1.321 (2) C15—H15A 0.9600
C8—H8 0.9300 C15—H15B 0.9600
C14—H14 0.9300 C15—H15C 0.9600
C12—O4—C16 117.72 (11) O4—C12—C13 115.69 (12)
C13—O3—C15 117.87 (10) C11—C12—C13 119.43 (11)
C10—C9—C14 118.49 (12) C12—C11—C10 120.62 (13)
C10—C9—C8 122.14 (12) C12—C11—H11 119.7
C14—C9—C8 119.37 (12) C10—C11—H11 119.7
O3—C13—C14 124.98 (12) C8—C7—C4 126.75 (13)
O3—C13—C12 115.47 (11) C8—C7—H7 116.6
C14—C13—C12 119.54 (12) C4—C7—H7 116.6
C3—C4—C5 118.04 (12) C2—C3—C4 121.63 (13)
C3—C4—C7 119.01 (12) C2—C3—H3 119.2
C5—C4—C7 122.94 (12) C4—C3—H3 119.2
O2—N1—O1 123.13 (14) O4—C16—C17 107.48 (14)
O2—N1—C1 118.00 (14) O4—C16—H16A 110.2
O1—N1—C1 118.82 (14) C17—C16—H16A 110.2
C2—C1—C6 121.92 (12) O4—C16—H16B 110.2
C2—C1—N1 119.48 (13) C17—C16—H16B 110.2
C6—C1—N1 118.59 (13) H16A—C16—H16B 108.5
C7—C8—C9 125.65 (13) C1—C2—C3 118.44 (13)
C7—C8—H8 117.2 C1—C2—H2 120.8
C9—C8—H8 117.2 C3—C2—H2 120.8
C13—C14—C9 121.24 (12) C16—C17—H17A 109.5
C13—C14—H14 119.4 C16—C17—H17B 109.5
C9—C14—H14 119.4 H17A—C17—H17B 109.5
C1—C6—C5 118.84 (13) C16—C17—H17C 109.5
C1—C6—H6 120.6 H17A—C17—H17C 109.5
C5—C6—H6 120.6 H17B—C17—H17C 109.5
C9—C10—C11 120.61 (13) O3—C15—H15A 109.5
C9—C10—H10 119.7 O3—C15—H15B 109.5
C11—C10—H10 119.7 H15A—C15—H15B 109.5
C6—C5—C4 121.13 (13) O3—C15—H15C 109.5
C6—C5—H5 119.4 H15A—C15—H15C 109.5
C4—C5—H5 119.4 H15B—C15—H15C 109.5
O4—C12—C11 124.88 (12)
C15—O3—C13—C14 −1.2 (2) C16—O4—C12—C11 7.3 (2)
C15—O3—C13—C12 179.55 (13) C16—O4—C12—C13 −172.56 (13)
O2—N1—C1—C2 5.9 (2) O3—C13—C12—O4 0.07 (18)
O1—N1—C1—C2 −171.61 (15) C14—C13—C12—O4 −179.27 (12)
O2—N1—C1—C6 −174.80 (15) O3—C13—C12—C11 −179.80 (13)
O1—N1—C1—C6 7.7 (2) C14—C13—C12—C11 0.9 (2)
C10—C9—C8—C7 25.6 (2) O4—C12—C11—C10 178.12 (14)
C14—C9—C8—C7 −153.64 (15) C13—C12—C11—C10 −2.0 (2)
O3—C13—C14—C9 −177.74 (13) C9—C10—C11—C12 0.8 (2)
C12—C13—C14—C9 1.5 (2) C9—C8—C7—C4 −179.53 (13)
C10—C9—C14—C13 −2.7 (2) C3—C4—C7—C8 −164.96 (15)
C8—C9—C14—C13 176.55 (12) C5—C4—C7—C8 16.6 (2)
C2—C1—C6—C5 −0.7 (2) C5—C4—C3—C2 −0.3 (2)
N1—C1—C6—C5 −179.95 (13) C7—C4—C3—C2 −178.83 (13)
C14—C9—C10—C11 1.5 (2) C12—O4—C16—C17 −179.27 (13)
C8—C9—C10—C11 −177.69 (14) C6—C1—C2—C3 0.0 (2)
C1—C6—C5—C4 0.9 (2) N1—C1—C2—C3 179.29 (13)
C3—C4—C5—C6 −0.4 (2) C4—C3—C2—C1 0.5 (2)
C7—C4—C5—C6 178.09 (13)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C9–C14 benzene ring.

D—H···A D—H H···A D···A D—H···A
C17—H17A···Cg2 0.97 2.96 3.281 (2) 145

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5986).

References

  1. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S. , Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans 2, pp. 787–797.
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, H. S. (1989). Chem. Phys. Lett 154, 93–96.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812034320/bt5986sup1.cif

e-68-o2774-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812034320/bt5986Isup2.hkl

e-68-o2774-Isup2.hkl (182KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812034320/bt5986Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES