Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 25;68(Pt 9):o2785. doi: 10.1107/S1600536812036306

N′-[(E)-4-Benz­yloxy-2-hy­droxy­benzyl­idene]benzohydrazide

P R Reshma a, M Sithambaresan b,*, M R Prathapachandra Kurup a
PMCID: PMC3435816  PMID: 22969662

Abstract

The title compound, C21H18N2O3, exists in the E conformation with respect to the azomethane C=N double bond. The central benzene ring is almost coplanar with one of the substituent benzene rings [dihedral angle = 1.74 (5)°] and is approximately orthogonal to the other benzene ring of the mol­ecule [dihedral angle = 86.61 (7)°]. An intra­molecular O—H⋯N hydrogen bond occurs. The crystal packing is dominated by N—H⋯O hydrogen bonds, which lead to an infinite chain running parallel to [010].

Related literature  

For the biological activity of hydrazones, see: Patil et al. (2010); Zhang et al. (2010). For the synthesis of related compounds, see: Emmanuel et al. (2011); Mangalam & Kurup (2011). For related structures, see: Lin & Sang (2009); Mohd Lair et al. (2009).graphic file with name e-68-o2785-scheme1.jpg

Experimental  

Crystal data  

  • C21H18N2O3

  • M r = 346.37

  • Monoclinic, Inline graphic

  • a = 10.8053 (6) Å

  • b = 4.8952 (2) Å

  • c = 16.3601 (10) Å

  • β = 95.813 (2)°

  • V = 860.90 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.969, T max = 0.978

  • 9033 measured reflections

  • 1705 independent reflections

  • 1593 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.082

  • S = 1.12

  • 1705 reflections

  • 243 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036306/fj2591sup1.cif

e-68-o2785-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036306/fj2591Isup2.hkl

e-68-o2785-Isup2.hkl (84KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036306/fj2591Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2′⋯O3i 0.85 (1) 2.09 (1) 2.903 (2) 160 (2)
O2—H2′′⋯N1 0.87 (2) 1.79 (2) 2.592 (2) 152 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for providing the single-crystal X-ray diffraction data. PRR thanks the Council of Scientific and Industrial Research, New Delhi, India, for a Junior Research Fellowship.

supplementary crystallographic information

Comment

Hydrazone compounds have received much attention due to their potential applications in biological chemistry (Patil et al., 2010; Zhang et al., 2010). As a continuous work on the hydrazone compounds, a new hydrazone compound, N'-{(E)-[4-(benzyloxy)-2-hydroxyphenyl]methylidene}benzohydrazide, was prepared and structurally characterized. The ORTEP view of the title compound is shown in Fig. 1.

The compound crystallizes in monoclinic space group P21. The molecule adopts an E configuration with respect to C14=N1 bond (Lin & Sang 2009; Mohd Lair et al., 2009) and it exists in amido form with C15=O3 bond length of 1.224 (3) Å which is very close to a formal C=O bond length [1.21 Å]. The aromatic ring C8—C13 is almost coplanar with the ring C16—C21 with dihedral angle of 1.74 (5)° whilst the ring C1—C6 is approximately orthogonal (86.61 (7)°) to the ring C16—C21.

While the intramolecular hydrogen bond O(2)—H(2'')···N(1) increases the rigidity of the molecule, intermolecular N(2)—H(2')···O(3) hydrogen bond (Table 1) links the adjacent molecules forming an infinite one-dimensional supramolecular chain running parallel to the [010] direction in the unit cell (Fig. 2). Benzohydrazone molecules within these chains also interact through very weak π···π interactions with a shortest centroid-centroid distance of 4.8950 (15) Å that not only augment the stronger N—H···O hydrogen bond but also interconnects the infinite chains forming three-dimensional network in the lattice. The parallel arrangement of the molecules along b axis is shown in Fig. 3.

Experimental

The title compound was prepared by adapting a reported procedure (Emmanuel et al., 2011; Mangalam & Kurup, 2011) by refluxing a mixture of methanolic solutions of benzhydrazide (0.136 g,1 mmol) and 4-benzyloxysalicylaldehyde (0.2282 g,1 mmol) for 4 h. The formed crystals were collected, washed with few drops of methanol and dried over P4O10in vacuo. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation from its methanolic solution.

Refinement

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso=1.2Ueq. H atoms of O2—H2'' and N2—H2' bonds were located from difference maps and restrained using DFIX instructions with O—H = 0.87 ± 0.02 Å and N—H = 0.85 ± 0.01 Å.

In the absence of significant anomalous scattering effects Friedel pairs have been merged.

Figures

Fig. 1.

Fig. 1.

ORTEP view of the unique part of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.

Fig. 2.

Fig. 2.

Graphical representation showing one-dimensional supramolecular hydrogen bonding network in the crystal structure of C21H18N2O3.

Fig. 3.

Fig. 3.

Packing diagram of the compound showing the parallel arrangement of the molecules along b axis.

Crystal data

C21H18N2O3 F(000) = 364
Mr = 346.37 Dx = 1.336 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 5951 reflections
a = 10.8053 (6) Å θ = 2.4–28.1°
b = 4.8952 (2) Å µ = 0.09 mm1
c = 16.3601 (10) Å T = 296 K
β = 95.813 (2)° Block, colorless
V = 860.90 (8) Å3 0.35 × 0.30 × 0.25 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer 1705 independent reflections
Radiation source: fine-focus sealed tube 1593 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
Detector resolution: 8.33 pixels mm-1 θmax = 25.0°, θmin = 3.0°
ω and φ scan h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2004) k = −5→5
Tmin = 0.969, Tmax = 0.978 l = −19→19
9033 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.0573P] where P = (Fo2 + 2Fc2)/3
1705 reflections (Δ/σ)max = 0.005
243 parameters Δρmax = 0.12 e Å3
3 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.08187 (12) 0.6299 (3) 1.18699 (7) 0.0525 (4)
O2 0.19313 (15) 0.4504 (4) 0.91841 (8) 0.0610 (4)
O3 0.43474 (14) 0.3828 (3) 0.76116 (9) 0.0575 (4)
N1 0.37436 (15) 0.7368 (4) 0.87075 (9) 0.0471 (4)
N2 0.44743 (17) 0.8127 (3) 0.81016 (10) 0.0458 (4)
C1 −0.1620 (2) 0.5457 (6) 1.27899 (13) 0.0681 (7)
H1 −0.1984 0.6716 1.2413 0.082*
C2 −0.2072 (2) 0.5169 (8) 1.35467 (15) 0.0812 (9)
H2A −0.2737 0.6235 1.3677 0.097*
C3 −0.1550 (3) 0.3347 (7) 1.40967 (15) 0.0779 (8)
H3 −0.1853 0.3174 1.4607 0.093*
C4 −0.0583 (3) 0.1761 (8) 1.39081 (16) 0.0890 (9)
H4 −0.0228 0.0501 1.4288 0.107*
C5 −0.0126 (2) 0.2025 (7) 1.31467 (15) 0.0750 (7)
H5 0.0528 0.0928 1.3015 0.090*
C6 −0.06386 (17) 0.3899 (5) 1.25910 (11) 0.0500 (5)
C7 −0.01383 (18) 0.4243 (5) 1.17735 (11) 0.0531 (5)
H7A 0.0203 0.2531 1.1600 0.064*
H7B −0.0798 0.4808 1.1361 0.064*
C8 0.14629 (15) 0.6828 (4) 1.12181 (10) 0.0424 (4)
C9 0.13243 (17) 0.5416 (4) 1.04847 (11) 0.0464 (5)
H9 0.0725 0.4054 1.0401 0.056*
C10 0.20779 (17) 0.6026 (4) 0.98724 (10) 0.0431 (4)
C11 0.29517 (17) 0.8163 (4) 0.99739 (10) 0.0421 (4)
C12 0.30438 (17) 0.9593 (5) 1.07174 (11) 0.0501 (5)
H12 0.3604 1.1034 1.0794 0.060*
C13 0.23345 (17) 0.8937 (5) 1.13355 (11) 0.0493 (5)
H13 0.2431 0.9886 1.1830 0.059*
C14 0.37200 (17) 0.8897 (5) 0.93334 (11) 0.0470 (4)
H14 0.4195 1.0484 0.9380 0.056*
C15 0.47098 (17) 0.6182 (4) 0.75527 (11) 0.0427 (4)
C16 0.54733 (16) 0.7030 (4) 0.68911 (11) 0.0433 (4)
C17 0.5333 (2) 0.5618 (5) 0.61561 (12) 0.0565 (6)
H17 0.4738 0.4244 0.6077 0.068*
C18 0.6065 (2) 0.6223 (6) 0.55402 (13) 0.0671 (6)
H18 0.5957 0.5273 0.5046 0.080*
C19 0.6950 (2) 0.8216 (6) 0.56521 (14) 0.0673 (7)
H19 0.7449 0.8610 0.5236 0.081*
C20 0.7105 (2) 0.9643 (6) 0.63802 (14) 0.0655 (6)
H20 0.7709 1.0998 0.6455 0.079*
C21 0.63653 (18) 0.9069 (5) 0.70001 (13) 0.0532 (5)
H21 0.6466 1.0048 0.7489 0.064*
H2' 0.4593 (19) 0.9831 (9) 0.8048 (13) 0.047 (6)*
H2'' 0.249 (2) 0.514 (7) 0.8883 (16) 0.100 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0541 (7) 0.0627 (10) 0.0425 (6) −0.0105 (7) 0.0144 (5) −0.0043 (7)
O2 0.0859 (10) 0.0528 (10) 0.0474 (7) −0.0177 (8) 0.0207 (7) −0.0110 (7)
O3 0.0747 (9) 0.0345 (8) 0.0668 (9) −0.0058 (7) 0.0238 (7) 0.0026 (7)
N1 0.0560 (9) 0.0423 (10) 0.0454 (8) 0.0030 (8) 0.0161 (7) 0.0061 (8)
N2 0.0602 (9) 0.0320 (9) 0.0478 (8) 0.0002 (7) 0.0184 (7) 0.0059 (7)
C1 0.0652 (12) 0.0807 (18) 0.0605 (12) 0.0120 (13) 0.0162 (10) 0.0076 (13)
C2 0.0728 (15) 0.103 (2) 0.0724 (15) 0.0086 (16) 0.0311 (12) −0.0023 (17)
C3 0.0884 (17) 0.090 (2) 0.0604 (13) −0.0181 (17) 0.0300 (12) 0.0016 (15)
C4 0.106 (2) 0.094 (2) 0.0688 (15) 0.0056 (19) 0.0186 (14) 0.0313 (17)
C5 0.0768 (15) 0.0803 (19) 0.0712 (14) 0.0118 (14) 0.0235 (12) 0.0150 (14)
C6 0.0466 (10) 0.0556 (12) 0.0488 (9) −0.0096 (10) 0.0094 (8) −0.0032 (10)
C7 0.0530 (10) 0.0581 (14) 0.0497 (10) −0.0071 (11) 0.0115 (8) −0.0053 (10)
C8 0.0418 (9) 0.0464 (12) 0.0396 (9) 0.0028 (8) 0.0060 (7) 0.0006 (9)
C9 0.0505 (10) 0.0439 (11) 0.0454 (10) −0.0058 (9) 0.0078 (8) 0.0003 (9)
C10 0.0536 (10) 0.0382 (10) 0.0377 (8) 0.0020 (9) 0.0059 (7) 0.0002 (8)
C11 0.0447 (9) 0.0407 (11) 0.0414 (9) 0.0028 (8) 0.0061 (7) 0.0016 (8)
C12 0.0504 (10) 0.0492 (13) 0.0508 (10) −0.0105 (10) 0.0055 (8) −0.0052 (9)
C13 0.0542 (10) 0.0547 (12) 0.0391 (9) −0.0051 (10) 0.0055 (7) −0.0061 (10)
C14 0.0487 (9) 0.0425 (11) 0.0507 (10) −0.0011 (9) 0.0091 (8) 0.0022 (10)
C15 0.0482 (10) 0.0349 (10) 0.0460 (9) 0.0024 (9) 0.0089 (7) 0.0057 (9)
C16 0.0482 (10) 0.0364 (10) 0.0465 (9) 0.0053 (8) 0.0097 (8) 0.0052 (8)
C17 0.0673 (12) 0.0523 (14) 0.0515 (11) −0.0063 (11) 0.0139 (9) −0.0026 (10)
C18 0.0844 (15) 0.0710 (17) 0.0487 (11) −0.0028 (15) 0.0210 (10) −0.0012 (12)
C19 0.0731 (14) 0.0721 (17) 0.0613 (13) 0.0023 (13) 0.0296 (11) 0.0135 (13)
C20 0.0601 (12) 0.0620 (16) 0.0779 (15) −0.0129 (12) 0.0245 (10) 0.0058 (13)
C21 0.0565 (10) 0.0488 (12) 0.0558 (10) −0.0040 (10) 0.0131 (8) 0.0003 (10)

Geometric parameters (Å, º)

O1—C8 1.356 (2) C8—C9 1.380 (3)
O1—C7 1.440 (3) C8—C13 1.397 (3)
O2—C10 1.346 (2) C9—C10 1.386 (3)
O2—H2'' 0.871 (18) C9—H9 0.9300
O3—C15 1.224 (3) C10—C11 1.407 (3)
N1—C14 1.271 (2) C11—C12 1.398 (3)
N1—N2 1.379 (2) C11—C14 1.447 (2)
N2—C15 1.350 (3) C12—C13 1.367 (3)
N2—H2' 0.8500 (11) C12—H12 0.9300
C1—C6 1.372 (3) C13—H13 0.9300
C1—C2 1.383 (3) C14—H14 0.9300
C1—H1 0.9300 C15—C16 1.485 (2)
C2—C3 1.349 (4) C16—C17 1.382 (3)
C2—H2A 0.9300 C16—C21 1.386 (3)
C3—C4 1.363 (4) C17—C18 1.375 (3)
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.392 (3) C18—C19 1.365 (4)
C4—H4 0.9300 C18—H18 0.9300
C5—C6 1.369 (4) C19—C20 1.376 (3)
C5—H5 0.9300 C19—H19 0.9300
C6—C7 1.502 (2) C20—C21 1.382 (3)
C7—H7A 0.9700 C20—H20 0.9300
C7—H7B 0.9700 C21—H21 0.9300
C8—O1—C7 117.87 (14) O2—C10—C9 117.22 (18)
C10—O2—H2'' 104 (2) O2—C10—C11 122.05 (16)
C14—N1—N2 118.70 (17) C9—C10—C11 120.73 (17)
C15—N2—N1 116.64 (16) C12—C11—C10 117.55 (16)
C15—N2—H2' 125.7 (15) C12—C11—C14 120.68 (18)
N1—N2—H2' 116.2 (15) C10—C11—C14 121.77 (17)
C6—C1—C2 120.5 (2) C13—C12—C11 121.99 (19)
C6—C1—H1 119.8 C13—C12—H12 119.0
C2—C1—H1 119.8 C11—C12—H12 119.0
C3—C2—C1 120.2 (3) C12—C13—C8 119.49 (17)
C3—C2—H2A 119.9 C12—C13—H13 120.3
C1—C2—H2A 119.9 C8—C13—H13 120.3
C2—C3—C4 120.3 (2) N1—C14—C11 119.8 (2)
C2—C3—H3 119.9 N1—C14—H14 120.1
C4—C3—H3 119.9 C11—C14—H14 120.1
C3—C4—C5 120.0 (3) O3—C15—N2 121.87 (17)
C3—C4—H4 120.0 O3—C15—C16 121.75 (18)
C5—C4—H4 120.0 N2—C15—C16 116.34 (18)
C6—C5—C4 120.0 (3) C17—C16—C21 119.04 (17)
C6—C5—H5 120.0 C17—C16—C15 118.32 (18)
C4—C5—H5 120.0 C21—C16—C15 122.54 (18)
C5—C6—C1 119.1 (2) C18—C17—C16 120.6 (2)
C5—C6—C7 120.6 (2) C18—C17—H17 119.7
C1—C6—C7 120.4 (2) C16—C17—H17 119.7
O1—C7—C6 107.46 (16) C19—C18—C17 120.2 (2)
O1—C7—H7A 110.2 C19—C18—H18 119.9
C6—C7—H7A 110.2 C17—C18—H18 119.9
O1—C7—H7B 110.2 C18—C19—C20 120.06 (19)
C6—C7—H7B 110.2 C18—C19—H19 120.0
H7A—C7—H7B 108.5 C20—C19—H19 120.0
O1—C8—C9 124.68 (17) C19—C20—C21 120.2 (2)
O1—C8—C13 115.18 (16) C19—C20—H20 119.9
C9—C8—C13 120.13 (16) C21—C20—H20 119.9
C8—C9—C10 120.04 (18) C20—C21—C16 119.9 (2)
C8—C9—H9 120.0 C20—C21—H21 120.1
C10—C9—H9 120.0 C16—C21—H21 120.1
C14—N1—N2—C15 164.71 (18) C10—C11—C12—C13 1.2 (3)
C6—C1—C2—C3 −0.1 (4) C14—C11—C12—C13 −179.66 (19)
C1—C2—C3—C4 −0.6 (5) C11—C12—C13—C8 −1.9 (3)
C2—C3—C4—C5 0.3 (5) O1—C8—C13—C12 178.99 (18)
C3—C4—C5—C6 0.7 (5) C9—C8—C13—C12 0.2 (3)
C4—C5—C6—C1 −1.4 (4) N2—N1—C14—C11 179.39 (16)
C4—C5—C6—C7 178.8 (3) C12—C11—C14—N1 170.89 (18)
C2—C1—C6—C5 1.0 (4) C10—C11—C14—N1 −10.0 (3)
C2—C1—C6—C7 −179.1 (3) N1—N2—C15—O3 −3.6 (3)
C8—O1—C7—C6 175.83 (17) N1—N2—C15—C16 178.67 (15)
C5—C6—C7—O1 −90.4 (3) O3—C15—C16—C17 28.2 (3)
C1—C6—C7—O1 89.8 (2) N2—C15—C16—C17 −154.05 (19)
C7—O1—C8—C9 −4.4 (3) O3—C15—C16—C21 −148.1 (2)
C7—O1—C8—C13 176.89 (17) N2—C15—C16—C21 29.7 (3)
O1—C8—C9—C10 −176.51 (17) C21—C16—C17—C18 −0.1 (3)
C13—C8—C9—C10 2.1 (3) C15—C16—C17—C18 −176.5 (2)
C8—C9—C10—O2 177.42 (18) C16—C17—C18—C19 0.7 (4)
C8—C9—C10—C11 −2.9 (3) C17—C18—C19—C20 −0.6 (4)
O2—C10—C11—C12 −179.1 (2) C18—C19—C20—C21 −0.1 (4)
C9—C10—C11—C12 1.2 (3) C19—C20—C21—C16 0.6 (4)
O2—C10—C11—C14 1.8 (3) C17—C16—C21—C20 −0.5 (3)
C9—C10—C11—C14 −177.93 (18) C15—C16—C21—C20 175.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2′···O3i 0.85 (1) 2.09 (1) 2.903 (2) 160 (2)
O2—H2′′···N1 0.87 (2) 1.79 (2) 2.592 (2) 152 (3)

Symmetry code: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2591).

References

  1. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). SADABS, APEX2, XPREP and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Emmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3267. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Lin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650. [DOI] [PMC free article] [PubMed]
  6. Mangalam, N. A. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 76, 22–28.
  7. Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190. [DOI] [PMC free article] [PubMed]
  8. Patil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem. 63, 688–699.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  11. Zhang, Y. H., Zhang, L., Liu, L., Guo, J. X., Wu, D. L., Xu, G. C., Wang, X. H. & Jia, D. Z. (2010). Inorg. Chim. Acta, 363, 289–293.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036306/fj2591sup1.cif

e-68-o2785-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036306/fj2591Isup2.hkl

e-68-o2785-Isup2.hkl (84KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036306/fj2591Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES