Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 25;68(Pt 9):o2788–o2789. doi: 10.1107/S1600536812036446

Ethyl 6-(4-meth­oxy­phen­yl)-2-oxo-4-phenyl­cyclo­hex-3-ene­carboxyl­ate

Hoong-Kun Fun a,*, Abbas Farhadikoutenaei a,, B K Sarojini b, B J Mohan b, B Narayana c
PMCID: PMC3435819  PMID: 22969665

Abstract

The asymmetric unit of the title compound, C22H22O4, consists of two independent mol­ecules (A and B). The cyclo­hexene rings adopt slightly distorted sofa conformations in both mol­ecules. The dihedral angles between the benzene rings are 74.16 (13) and 71.85 (13)° in mol­ecules A and B, respectively. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into a ribbon-like structure along the b axis. Weak C—H⋯π inter­actions are also observed.

Related literature  

For applications of chalcones and cyclo­hexenone derivatives, see: Padmavathi et al. (2000); Senguttuvan & Nagarajan (2010); Tanaka et al. (1997). For related structures, see: Dutkiewicz et al. (2011a ,b ,c ); Fun et al. (2008); Fischer et al. (2008). For conformation analysis, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o2788-scheme1.jpg

Experimental  

Crystal data  

  • C22H22O4

  • M r = 350.40

  • Orthorhombic, Inline graphic

  • a = 22.3528 (13) Å

  • b = 8.1659 (5) Å

  • c = 19.7132 (12) Å

  • V = 3598.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.37 × 0.24 × 0.17 mm

Data collection  

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.968, T max = 0.985

  • 35140 measured reflections

  • 5622 independent reflections

  • 4938 reflections with I > 2σ(I)

  • R int = 0.052

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.139

  • S = 1.08

  • 5622 reflections

  • 473 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) globl, I. DOI: 10.1107/S1600536812036446/lh5518sup1.cif

e-68-o2788-sup1.cif (44.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036446/lh5518Isup2.hkl

e-68-o2788-Isup2.hkl (275.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036446/lh5518Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C13A–C18A and C13B–C18B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5A—H5AA⋯O1A i 0.95 2.41 3.210 (3) 141
C5B—H5BA⋯O1B i 0.95 2.53 3.329 (3) 142
C14B—H14B⋯O2A 0.95 2.43 3.377 (3) 173
C17A—H17A⋯O2B i 0.95 2.59 3.218 (4) 124
C21A—H21ACg1i 0.99 2.70 3.513 (3) 142
C21B—H21DCg2i 0.99 2.71 3.501 (3) 139

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and AFK thank Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160. BKS gratefully acknowledges the Department of Atomic Energy (DAE)/BRNS, Government of India, for providing financial assistance for the BRNS project (No. 2011/34/20-BRNS/0846).

supplementary crystallographic information

Comment

Chalcones undergo a variety of chemical reactions and were found to be useful in the synthesis of various heterocyclic compounds. Michael addition of ethyl acetoacetate to chalcones yield 4,6-diaryl-2-oxo-cyclohex-3-ene-1-carboxylate derivatives, which could be used for the synthesis of fused heterocycles like isoxazoles, pyrazoles and quinazolins (Padmavathi et al., 2000; Senguttuvan & Nagarajan, 2010). Cyclohexenone derivatives are well known lead molecules for the treatment of inflammation and autoimmune diseases (Tanaka et al., 1997). The crystal structure of some of the cyclohexenone derivatives have been reported (Dutkiewicz et al., 2011a,b,c; Fun et al., 2008; Fischer et al., 2008). The present work describes the synthesis and crystal structure of the title compound which was prepared by the reaction of 1-phenyl-3-(4-methoxyphenyl)- prop-2-en-1-one with ethyl acetoacetate.

The asymmetric unit of the title compound, (Fig 1), consists of two independent molecules (A and B). The cyclohexene rings (C7A–C12A and C7B–C12B) adopt slightly distorted sofa conformations with puckering parameters (Cremer & Pople, 1975) Q = 0.495 (3) Å, Θ = 126.1 (3) Å, φ = 316.5 (4)° and Q = 0.491 (3) Å, Θ = 54.2 (3) Å, φ = 129.5 (4)°, respectively. The dihedral angle between the benzene rings (C1–C6 and C13–C18) are 74.16 (13)° in molecule A and 71.85 (13) ° in molecule B. In the crystal (Fig 2), intermolecular C—H···O hydrogen bonds link the molecules into a ribbon-like structure along the b axis. The crystal structure is further stabilized by weak C—H···π interactions (Table 1), involving the C13A–C18A ring (centroid Cg1) and C13B–C18B ring (centroid Cg2).

Experimental

1-Phenyl-3-(4-methoxyphenyl)-prop-2-en-1-one (2.38 g, 0.01 mol) and ethyl acetoacetate (1.30 g, 0.01 mol) were refluxed for 8–10 hrs in 30 ml methanol in presence of 0.8 ml of 10% NaOH. The reaction mixture was cooled to room temperature and the precipitate obtained was filtered. The single crystals were grown by slow evaporation from solvent ethanol. M.P = 375–377 K

Refinement

All H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) (C—H = 0.95, 0.98, 0.99 and 1.00 Å). In the final refinement, three outliers reflections (9 2 0), (6 2 8) and (10 2 2) were omitted. A total of 5191 Friedel pairs were merged as there is no significant anomalous dispersion to determine the absolute structure.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis.

Crystal data

C22H22O4 F(000) = 1488
Mr = 350.40 Dx = 1.294 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 8949 reflections
a = 22.3528 (13) Å θ = 2.8–30.4°
b = 8.1659 (5) Å µ = 0.09 mm1
c = 19.7132 (12) Å T = 100 K
V = 3598.3 (4) Å3 Block, colourles
Z = 8 0.37 × 0.24 × 0.17 mm

Data collection

Bruker APEX DUO CCD area-detector diffractometer 5622 independent reflections
Radiation source: fine-focus sealed tube 4938 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
φ and ω scans θmax = 30.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −31→31
Tmin = 0.968, Tmax = 0.985 k = −11→11
35140 measured reflections l = −28→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0809P)2 + 0.8699P] where P = (Fo2 + 2Fc2)/3
5622 reflections (Δ/σ)max < 0.001
473 parameters Δρmax = 0.34 e Å3
1 restraint Δρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.33599 (9) 0.6380 (2) 0.17062 (11) 0.0253 (4)
O2A 0.19099 (10) 0.6033 (3) 0.17833 (11) 0.0286 (4)
O3A 0.22756 (8) 0.5761 (2) 0.07262 (10) 0.0224 (4)
O4A 0.04435 (8) −0.0315 (2) 0.07373 (12) 0.0269 (4)
C1A 0.49181 (11) 0.1749 (3) 0.14792 (15) 0.0229 (5)
H1AA 0.4978 0.2892 0.1418 0.028*
C2A 0.54107 (11) 0.0714 (3) 0.15406 (16) 0.0257 (5)
H2AA 0.5803 0.1160 0.1531 0.031*
C3A 0.53336 (12) −0.0960 (3) 0.16158 (16) 0.0247 (5)
H3AA 0.5671 −0.1663 0.1650 0.030*
C4A 0.47572 (11) −0.1600 (3) 0.16412 (15) 0.0230 (5)
H4AA 0.4701 −0.2746 0.1693 0.028*
C5A 0.42624 (11) −0.0575 (3) 0.15908 (14) 0.0212 (5)
H5AA 0.3872 −0.1029 0.1613 0.025*
C6A 0.43327 (11) 0.1118 (3) 0.15070 (13) 0.0190 (5)
C7A 0.37995 (11) 0.2194 (3) 0.14599 (13) 0.0182 (5)
C8A 0.32006 (10) 0.1426 (3) 0.13001 (13) 0.0173 (4)
H8AA 0.3053 0.0854 0.1710 0.021*
H8AB 0.3257 0.0595 0.0940 0.021*
C9A 0.27230 (10) 0.2658 (3) 0.10665 (13) 0.0189 (4)
H9AA 0.2851 0.3106 0.0617 0.023*
C10A 0.27010 (11) 0.4090 (3) 0.15723 (14) 0.0186 (5)
H10A 0.2597 0.3642 0.2029 0.022*
C11A 0.33127 (11) 0.4900 (3) 0.16184 (13) 0.0189 (4)
C12A 0.38382 (11) 0.3828 (3) 0.15857 (13) 0.0202 (5)
H12A 0.4222 0.4296 0.1655 0.024*
C13A 0.21137 (10) 0.1869 (3) 0.09738 (13) 0.0188 (5)
C14A 0.18482 (12) 0.1828 (3) 0.03368 (14) 0.0228 (5)
H14A 0.2051 0.2305 −0.0038 0.027*
C15A 0.12898 (11) 0.1104 (3) 0.02339 (14) 0.0229 (5)
H15A 0.1117 0.1075 −0.0206 0.027*
C16A 0.09903 (11) 0.0428 (3) 0.07818 (14) 0.0198 (5)
C17A 0.12397 (11) 0.0491 (3) 0.14289 (14) 0.0196 (5)
H17A 0.1029 0.0044 0.1805 0.024*
C18A 0.17959 (10) 0.1207 (3) 0.15224 (13) 0.0186 (4)
H18A 0.1964 0.1251 0.1965 0.022*
C19A 0.01679 (15) −0.0360 (5) 0.0087 (2) 0.0410 (8)
H19A −0.0222 −0.0902 0.0122 0.061*
H19B 0.0423 −0.0971 −0.0229 0.061*
H19C 0.0113 0.0759 −0.0081 0.061*
C20A 0.22468 (11) 0.5390 (3) 0.13910 (14) 0.0211 (5)
C21A 0.18806 (12) 0.7066 (3) 0.04974 (14) 0.0238 (5)
H21A 0.1999 0.8121 0.0705 0.029*
H21B 0.1462 0.6824 0.0627 0.029*
C22A 0.19371 (14) 0.7157 (5) −0.02593 (16) 0.0344 (7)
H22A 0.1648 0.7949 −0.0437 0.052*
H22B 0.1857 0.6076 −0.0456 0.052*
H22C 0.2343 0.7504 −0.0380 0.052*
O1B 0.27371 (8) 1.1276 (2) 0.29846 (11) 0.0228 (4)
O2B 0.12384 (9) 1.0816 (3) 0.30559 (11) 0.0311 (5)
O3B 0.17048 (8) 1.0763 (2) 0.40694 (11) 0.0236 (4)
O4B −0.01709 (9) 0.4697 (3) 0.41096 (12) 0.0291 (4)
C1B 0.43083 (11) 0.6756 (3) 0.33072 (15) 0.0229 (5)
H1BA 0.4357 0.7910 0.3332 0.028*
C2B 0.48104 (11) 0.5751 (3) 0.32730 (17) 0.0258 (6)
H2BA 0.5199 0.6221 0.3279 0.031*
C3B 0.47452 (11) 0.4060 (3) 0.32307 (15) 0.0235 (5)
H3BA 0.5088 0.3377 0.3198 0.028*
C4B 0.41756 (11) 0.3374 (3) 0.32369 (14) 0.0221 (5)
H4BA 0.4130 0.2219 0.3214 0.027*
C5B 0.36740 (10) 0.4366 (3) 0.32766 (13) 0.0184 (4)
H5BA 0.3288 0.3882 0.3284 0.022*
C6B 0.37288 (10) 0.6080 (3) 0.33057 (13) 0.0166 (4)
C7B 0.31931 (10) 0.7145 (3) 0.33191 (12) 0.0165 (4)
C8B 0.25930 (10) 0.6353 (3) 0.34695 (13) 0.0182 (4)
H8BA 0.2648 0.5503 0.3822 0.022*
H8BB 0.2445 0.5806 0.3054 0.022*
C9B 0.21188 (11) 0.7588 (3) 0.37141 (13) 0.0188 (4)
H9BA 0.2255 0.8038 0.4160 0.023*
C10B 0.20819 (10) 0.9020 (3) 0.32083 (13) 0.0186 (4)
H10B 0.1959 0.8568 0.2758 0.022*
C11B 0.26971 (10) 0.9824 (3) 0.31238 (13) 0.0183 (4)
C12B 0.32191 (10) 0.8759 (3) 0.31791 (14) 0.0187 (5)
H12B 0.3602 0.9234 0.3112 0.022*
C13B 0.15086 (10) 0.6802 (3) 0.38198 (13) 0.0188 (5)
C14B 0.12015 (11) 0.6010 (3) 0.32961 (14) 0.0200 (5)
H14B 0.1380 0.5936 0.2860 0.024*
C15B 0.06373 (11) 0.5328 (3) 0.34039 (14) 0.0200 (5)
H15B 0.0431 0.4801 0.3043 0.024*
C16B 0.03806 (11) 0.5427 (3) 0.40436 (15) 0.0208 (5)
C17B 0.06745 (12) 0.6203 (3) 0.45726 (14) 0.0241 (5)
H17B 0.0496 0.6270 0.5009 0.029*
C18B 0.12387 (11) 0.6886 (3) 0.44514 (14) 0.0230 (5)
H18B 0.1442 0.7421 0.4812 0.028*
C19B −0.04459 (16) 0.4778 (5) 0.4755 (2) 0.0444 (9)
H19D −0.0817 0.4141 0.4749 0.067*
H19E −0.0536 0.5921 0.4865 0.067*
H19F −0.0174 0.4327 0.5097 0.067*
C20B 0.16238 (11) 1.0292 (3) 0.34184 (14) 0.0225 (5)
C21B 0.12930 (12) 1.2019 (4) 0.43107 (15) 0.0251 (5)
H21C 0.0876 1.1728 0.4190 0.030*
H21D 0.1390 1.3089 0.4101 0.030*
C22B 0.13615 (14) 1.2114 (5) 0.50673 (17) 0.0370 (7)
H22D 0.1102 1.2981 0.5246 0.056*
H22E 0.1779 1.2360 0.5180 0.056*
H22F 0.1248 1.1063 0.5270 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0282 (9) 0.0172 (8) 0.0304 (10) −0.0021 (7) −0.0058 (8) −0.0003 (7)
O2A 0.0300 (10) 0.0309 (10) 0.0248 (10) 0.0055 (8) 0.0054 (8) −0.0013 (8)
O3A 0.0206 (8) 0.0238 (9) 0.0228 (9) 0.0049 (7) 0.0015 (7) −0.0017 (7)
O4A 0.0161 (8) 0.0289 (10) 0.0357 (11) −0.0042 (7) −0.0067 (8) −0.0032 (9)
C1A 0.0182 (10) 0.0191 (11) 0.0314 (13) −0.0025 (8) −0.0008 (10) 0.0006 (10)
C2A 0.0162 (10) 0.0256 (13) 0.0355 (15) −0.0033 (9) −0.0013 (11) −0.0006 (12)
C3A 0.0206 (10) 0.0261 (12) 0.0276 (13) 0.0023 (9) −0.0035 (10) 0.0009 (11)
C4A 0.0235 (11) 0.0179 (11) 0.0275 (12) 0.0002 (9) 0.0006 (10) −0.0001 (10)
C5A 0.0186 (10) 0.0230 (12) 0.0219 (12) −0.0034 (9) 0.0007 (9) 0.0006 (10)
C6A 0.0164 (10) 0.0215 (11) 0.0191 (11) −0.0012 (9) 0.0003 (9) −0.0021 (9)
C7A 0.0172 (10) 0.0195 (11) 0.0178 (10) −0.0036 (8) 0.0010 (9) 0.0017 (9)
C8A 0.0137 (9) 0.0166 (11) 0.0216 (11) −0.0027 (8) 0.0008 (9) −0.0005 (9)
C9A 0.0169 (10) 0.0194 (11) 0.0204 (11) 0.0000 (8) −0.0002 (9) −0.0012 (9)
C10A 0.0190 (10) 0.0172 (10) 0.0195 (11) −0.0012 (8) 0.0009 (9) −0.0010 (9)
C11A 0.0213 (10) 0.0169 (10) 0.0185 (11) −0.0026 (8) −0.0033 (9) 0.0003 (9)
C12A 0.0186 (10) 0.0193 (11) 0.0228 (11) −0.0035 (8) −0.0014 (9) 0.0007 (10)
C13A 0.0155 (9) 0.0171 (11) 0.0240 (12) 0.0007 (8) 0.0020 (9) −0.0025 (9)
C14A 0.0230 (11) 0.0241 (12) 0.0212 (12) −0.0016 (9) 0.0028 (9) −0.0013 (10)
C15A 0.0234 (11) 0.0237 (12) 0.0215 (11) 0.0006 (9) −0.0026 (10) −0.0003 (10)
C16A 0.0162 (10) 0.0177 (11) 0.0256 (12) −0.0001 (8) −0.0034 (9) −0.0014 (9)
C17A 0.0177 (10) 0.0192 (11) 0.0219 (11) −0.0004 (8) 0.0010 (9) 0.0011 (9)
C18A 0.0179 (10) 0.0196 (11) 0.0185 (11) 0.0014 (8) −0.0020 (9) −0.0008 (9)
C19A 0.0316 (15) 0.0451 (19) 0.0461 (19) −0.0067 (13) −0.0213 (15) −0.0034 (16)
C20A 0.0190 (10) 0.0212 (11) 0.0230 (11) −0.0031 (9) −0.0006 (9) −0.0006 (10)
C21A 0.0231 (11) 0.0235 (12) 0.0248 (12) 0.0059 (10) −0.0024 (10) 0.0004 (10)
C22A 0.0274 (14) 0.0502 (19) 0.0256 (14) 0.0096 (13) −0.0016 (11) 0.0048 (13)
O1B 0.0211 (8) 0.0183 (8) 0.0288 (10) −0.0020 (6) 0.0001 (7) 0.0026 (7)
O2B 0.0242 (9) 0.0453 (12) 0.0238 (9) 0.0074 (9) −0.0008 (8) 0.0007 (9)
O3B 0.0209 (8) 0.0228 (9) 0.0269 (9) 0.0046 (7) −0.0013 (7) −0.0013 (8)
O4B 0.0192 (8) 0.0308 (10) 0.0374 (11) −0.0089 (8) 0.0083 (8) −0.0010 (9)
C1B 0.0170 (10) 0.0208 (11) 0.0309 (13) −0.0013 (9) −0.0009 (10) 0.0018 (10)
C2B 0.0154 (10) 0.0252 (13) 0.0368 (15) −0.0008 (9) 0.0001 (11) 0.0046 (12)
C3B 0.0173 (10) 0.0240 (12) 0.0293 (14) 0.0036 (9) −0.0014 (10) 0.0038 (11)
C4B 0.0208 (10) 0.0209 (11) 0.0247 (12) −0.0002 (9) −0.0024 (9) 0.0005 (10)
C5B 0.0179 (10) 0.0182 (10) 0.0192 (10) −0.0026 (8) −0.0023 (9) 0.0032 (9)
C6B 0.0151 (9) 0.0175 (10) 0.0172 (10) −0.0011 (8) −0.0015 (8) 0.0008 (9)
C7B 0.0144 (9) 0.0198 (11) 0.0154 (10) −0.0015 (8) −0.0007 (8) 0.0000 (9)
C8B 0.0140 (9) 0.0193 (11) 0.0212 (11) −0.0016 (8) −0.0006 (9) 0.0006 (9)
C9B 0.0165 (10) 0.0206 (11) 0.0192 (11) −0.0021 (8) −0.0014 (9) 0.0015 (9)
C10B 0.0156 (9) 0.0212 (11) 0.0190 (11) −0.0016 (8) −0.0017 (9) 0.0011 (9)
C11B 0.0160 (9) 0.0201 (11) 0.0188 (10) −0.0021 (8) 0.0014 (8) −0.0013 (9)
C12B 0.0139 (9) 0.0192 (11) 0.0229 (12) −0.0036 (8) 0.0015 (9) 0.0005 (9)
C13B 0.0140 (9) 0.0195 (11) 0.0228 (11) −0.0007 (8) −0.0005 (9) 0.0035 (9)
C14B 0.0176 (10) 0.0215 (11) 0.0210 (11) −0.0016 (8) 0.0041 (9) 0.0013 (9)
C15B 0.0166 (10) 0.0205 (11) 0.0228 (12) −0.0013 (8) 0.0003 (9) −0.0008 (9)
C16B 0.0148 (10) 0.0198 (11) 0.0278 (12) −0.0005 (8) 0.0029 (10) 0.0037 (10)
C17B 0.0239 (11) 0.0257 (13) 0.0225 (12) −0.0003 (10) 0.0034 (10) 0.0000 (10)
C18B 0.0199 (11) 0.0258 (12) 0.0232 (12) −0.0036 (9) −0.0021 (9) 0.0002 (10)
C19B 0.0331 (16) 0.0466 (19) 0.054 (2) −0.0120 (14) 0.0238 (16) −0.0033 (17)
C20B 0.0187 (10) 0.0235 (12) 0.0253 (12) −0.0022 (9) 0.0039 (10) 0.0023 (10)
C21B 0.0227 (11) 0.0272 (13) 0.0256 (12) 0.0066 (10) 0.0008 (10) 0.0000 (10)
C22B 0.0293 (14) 0.055 (2) 0.0268 (14) 0.0123 (14) −0.0036 (12) −0.0113 (14)

Geometric parameters (Å, º)

O1A—C11A 1.226 (3) O1B—C11B 1.220 (3)
O2A—C20A 1.200 (3) O2B—C20B 1.198 (3)
O3A—C20A 1.347 (3) O3B—C20B 1.352 (4)
O3A—C21A 1.455 (3) O3B—C21B 1.458 (3)
O4A—C16A 1.367 (3) O4B—C16B 1.375 (3)
O4A—C19A 1.423 (4) O4B—C19B 1.414 (4)
C1A—C2A 1.394 (4) C1B—C2B 1.392 (4)
C1A—C6A 1.408 (3) C1B—C6B 1.408 (3)
C1A—H1AA 0.9500 C1B—H1BA 0.9500
C2A—C3A 1.385 (4) C2B—C3B 1.390 (4)
C2A—H2AA 0.9500 C2B—H2BA 0.9500
C3A—C4A 1.391 (3) C3B—C4B 1.391 (3)
C3A—H3AA 0.9500 C3B—H3BA 0.9500
C4A—C5A 1.390 (3) C4B—C5B 1.385 (3)
C4A—H4AA 0.9500 C4B—H4BA 0.9500
C5A—C6A 1.401 (4) C5B—C6B 1.406 (3)
C5A—H5AA 0.9500 C5B—H5BA 0.9500
C6A—C7A 1.484 (3) C6B—C7B 1.480 (3)
C7A—C12A 1.360 (3) C7B—C12B 1.348 (3)
C7A—C8A 1.512 (3) C7B—C8B 1.518 (3)
C8A—C9A 1.537 (3) C8B—C9B 1.540 (4)
C8A—H8AA 0.9900 C8B—H8BA 0.9900
C8A—H8AB 0.9900 C8B—H8BB 0.9900
C9A—C13A 1.517 (3) C9B—C13B 1.522 (3)
C9A—C10A 1.537 (4) C9B—C10B 1.539 (4)
C9A—H9AA 1.0000 C9B—H9BA 1.0000
C10A—C20A 1.512 (4) C10B—C20B 1.516 (4)
C10A—C11A 1.522 (3) C10B—C11B 1.533 (3)
C10A—H10A 1.0000 C10B—H10B 1.0000
C11A—C12A 1.466 (3) C11B—C12B 1.460 (3)
C12A—H12A 0.9500 C12B—H12B 0.9500
C13A—C14A 1.389 (4) C13B—C18B 1.385 (4)
C13A—C18A 1.402 (4) C13B—C14B 1.398 (4)
C14A—C15A 1.396 (4) C14B—C15B 1.395 (3)
C14A—H14A 0.9500 C14B—H14B 0.9500
C15A—C16A 1.386 (4) C15B—C16B 1.388 (4)
C15A—H15A 0.9500 C15B—H15B 0.9500
C16A—C17A 1.393 (4) C16B—C17B 1.386 (4)
C17A—C18A 1.386 (3) C17B—C18B 1.400 (4)
C17A—H17A 0.9500 C17B—H17B 0.9500
C18A—H18A 0.9500 C18B—H18B 0.9500
C19A—H19A 0.9800 C19B—H19D 0.9800
C19A—H19B 0.9800 C19B—H19E 0.9800
C19A—H19C 0.9800 C19B—H19F 0.9800
C21A—C22A 1.499 (4) C21B—C22B 1.501 (4)
C21A—H21A 0.9900 C21B—H21C 0.9900
C21A—H21B 0.9900 C21B—H21D 0.9900
C22A—H22A 0.9800 C22B—H22D 0.9800
C22A—H22B 0.9800 C22B—H22E 0.9800
C22A—H22C 0.9800 C22B—H22F 0.9800
C20A—O3A—C21A 115.9 (2) C20B—O3B—C21B 115.2 (2)
C16A—O4A—C19A 117.2 (2) C16B—O4B—C19B 117.0 (3)
C2A—C1A—C6A 120.6 (2) C2B—C1B—C6B 120.7 (2)
C2A—C1A—H1AA 119.7 C2B—C1B—H1BA 119.6
C6A—C1A—H1AA 119.7 C6B—C1B—H1BA 119.6
C3A—C2A—C1A 120.6 (2) C1B—C2B—C3B 120.2 (2)
C3A—C2A—H2AA 119.7 C1B—C2B—H2BA 119.9
C1A—C2A—H2AA 119.7 C3B—C2B—H2BA 119.9
C2A—C3A—C4A 119.3 (2) C4B—C3B—C2B 119.7 (2)
C2A—C3A—H3AA 120.3 C4B—C3B—H3BA 120.2
C4A—C3A—H3AA 120.3 C2B—C3B—H3BA 120.2
C3A—C4A—C5A 120.5 (2) C5B—C4B—C3B 120.4 (2)
C3A—C4A—H4AA 119.7 C5B—C4B—H4BA 119.8
C5A—C4A—H4AA 119.7 C3B—C4B—H4BA 119.8
C4A—C5A—C6A 120.9 (2) C4B—C5B—C6B 120.9 (2)
C4A—C5A—H5AA 119.6 C4B—C5B—H5BA 119.5
C6A—C5A—H5AA 119.6 C6B—C5B—H5BA 119.5
C5A—C6A—C1A 118.1 (2) C5B—C6B—C1B 118.0 (2)
C5A—C6A—C7A 120.1 (2) C5B—C6B—C7B 121.0 (2)
C1A—C6A—C7A 121.8 (2) C1B—C6B—C7B 121.0 (2)
C12A—C7A—C6A 121.3 (2) C12B—C7B—C6B 122.4 (2)
C12A—C7A—C8A 120.1 (2) C12B—C7B—C8B 119.6 (2)
C6A—C7A—C8A 118.6 (2) C6B—C7B—C8B 117.9 (2)
C7A—C8A—C9A 114.0 (2) C7B—C8B—C9B 113.0 (2)
C7A—C8A—H8AA 108.8 C7B—C8B—H8BA 109.0
C9A—C8A—H8AA 108.8 C9B—C8B—H8BA 109.0
C7A—C8A—H8AB 108.8 C7B—C8B—H8BB 109.0
C9A—C8A—H8AB 108.8 C9B—C8B—H8BB 109.0
H8AA—C8A—H8AB 107.7 H8BA—C8B—H8BB 107.8
C13A—C9A—C10A 111.9 (2) C13B—C9B—C10B 111.2 (2)
C13A—C9A—C8A 112.4 (2) C13B—C9B—C8B 112.5 (2)
C10A—C9A—C8A 109.0 (2) C10B—C9B—C8B 109.4 (2)
C13A—C9A—H9AA 107.8 C13B—C9B—H9BA 107.9
C10A—C9A—H9AA 107.8 C10B—C9B—H9BA 107.9
C8A—C9A—H9AA 107.8 C8B—C9B—H9BA 107.9
C20A—C10A—C11A 108.2 (2) C20B—C10B—C11B 110.0 (2)
C20A—C10A—C9A 113.7 (2) C20B—C10B—C9B 112.3 (2)
C11A—C10A—C9A 109.9 (2) C11B—C10B—C9B 110.36 (19)
C20A—C10A—H10A 108.3 C20B—C10B—H10B 108.0
C11A—C10A—H10A 108.3 C11B—C10B—H10B 108.0
C9A—C10A—H10A 108.3 C9B—C10B—H10B 108.0
O1A—C11A—C12A 121.7 (2) O1B—C11B—C12B 122.5 (2)
O1A—C11A—C10A 121.0 (2) O1B—C11B—C10B 120.4 (2)
C12A—C11A—C10A 117.2 (2) C12B—C11B—C10B 117.0 (2)
C7A—C12A—C11A 122.9 (2) C7B—C12B—C11B 124.3 (2)
C7A—C12A—H12A 118.6 C7B—C12B—H12B 117.8
C11A—C12A—H12A 118.6 C11B—C12B—H12B 117.8
C14A—C13A—C18A 118.1 (2) C18B—C13B—C14B 118.2 (2)
C14A—C13A—C9A 120.2 (2) C18B—C13B—C9B 119.5 (2)
C18A—C13A—C9A 121.7 (2) C14B—C13B—C9B 122.3 (2)
C13A—C14A—C15A 121.6 (2) C15B—C14B—C13B 121.1 (2)
C13A—C14A—H14A 119.2 C15B—C14B—H14B 119.5
C15A—C14A—H14A 119.2 C13B—C14B—H14B 119.5
C16A—C15A—C14A 119.2 (2) C16B—C15B—C14B 119.3 (2)
C16A—C15A—H15A 120.4 C16B—C15B—H15B 120.4
C14A—C15A—H15A 120.4 C14B—C15B—H15B 120.4
O4A—C16A—C15A 124.0 (2) O4B—C16B—C17B 123.5 (2)
O4A—C16A—C17A 115.7 (2) O4B—C16B—C15B 115.5 (2)
C15A—C16A—C17A 120.4 (2) C17B—C16B—C15B 121.0 (2)
C18A—C17A—C16A 119.7 (2) C16B—C17B—C18B 118.8 (2)
C18A—C17A—H17A 120.1 C16B—C17B—H17B 120.6
C16A—C17A—H17A 120.1 C18B—C17B—H17B 120.6
C17A—C18A—C13A 121.0 (2) C13B—C18B—C17B 121.7 (2)
C17A—C18A—H18A 119.5 C13B—C18B—H18B 119.1
C13A—C18A—H18A 119.5 C17B—C18B—H18B 119.1
O4A—C19A—H19A 109.5 O4B—C19B—H19D 109.5
O4A—C19A—H19B 109.5 O4B—C19B—H19E 109.5
H19A—C19A—H19B 109.5 H19D—C19B—H19E 109.5
O4A—C19A—H19C 109.5 O4B—C19B—H19F 109.5
H19A—C19A—H19C 109.5 H19D—C19B—H19F 109.5
H19B—C19A—H19C 109.5 H19E—C19B—H19F 109.5
O2A—C20A—O3A 123.9 (3) O2B—C20B—O3B 124.1 (3)
O2A—C20A—C10A 125.2 (3) O2B—C20B—C10B 124.6 (3)
O3A—C20A—C10A 110.9 (2) O3B—C20B—C10B 111.3 (2)
O3A—C21A—C22A 107.1 (2) O3B—C21B—C22B 107.2 (2)
O3A—C21A—H21A 110.3 O3B—C21B—H21C 110.3
C22A—C21A—H21A 110.3 C22B—C21B—H21C 110.3
O3A—C21A—H21B 110.3 O3B—C21B—H21D 110.3
C22A—C21A—H21B 110.3 C22B—C21B—H21D 110.3
H21A—C21A—H21B 108.6 H21C—C21B—H21D 108.5
C21A—C22A—H22A 109.5 C21B—C22B—H22D 109.5
C21A—C22A—H22B 109.5 C21B—C22B—H22E 109.5
H22A—C22A—H22B 109.5 H22D—C22B—H22E 109.5
C21A—C22A—H22C 109.5 C21B—C22B—H22F 109.5
H22A—C22A—H22C 109.5 H22D—C22B—H22F 109.5
H22B—C22A—H22C 109.5 H22E—C22B—H22F 109.5
C6A—C1A—C2A—C3A 1.4 (5) C6B—C1B—C2B—C3B 0.6 (5)
C1A—C2A—C3A—C4A −1.1 (5) C1B—C2B—C3B—C4B −1.3 (5)
C2A—C3A—C4A—C5A 0.1 (5) C2B—C3B—C4B—C5B 0.8 (4)
C3A—C4A—C5A—C6A 0.6 (4) C3B—C4B—C5B—C6B 0.5 (4)
C4A—C5A—C6A—C1A −0.3 (4) C4B—C5B—C6B—C1B −1.3 (4)
C4A—C5A—C6A—C7A −179.5 (3) C4B—C5B—C6B—C7B 177.4 (2)
C2A—C1A—C6A—C5A −0.7 (4) C2B—C1B—C6B—C5B 0.7 (4)
C2A—C1A—C6A—C7A 178.5 (3) C2B—C1B—C6B—C7B −178.0 (3)
C5A—C6A—C7A—C12A 159.7 (3) C5B—C6B—C7B—C12B −163.2 (3)
C1A—C6A—C7A—C12A −19.5 (4) C1B—C6B—C7B—C12B 15.4 (4)
C5A—C6A—C7A—C8A −17.5 (4) C5B—C6B—C7B—C8B 14.3 (4)
C1A—C6A—C7A—C8A 163.4 (3) C1B—C6B—C7B—C8B −167.0 (2)
C12A—C7A—C8A—C9A 19.2 (3) C12B—C7B—C8B—C9B −22.5 (3)
C6A—C7A—C8A—C9A −163.6 (2) C6B—C7B—C8B—C9B 159.9 (2)
C7A—C8A—C9A—C13A −174.7 (2) C7B—C8B—C9B—C13B 176.3 (2)
C7A—C8A—C9A—C10A −50.1 (3) C7B—C8B—C9B—C10B 52.2 (3)
C13A—C9A—C10A—C20A −55.4 (3) C13B—C9B—C10B—C20B 55.3 (3)
C8A—C9A—C10A—C20A 179.7 (2) C8B—C9B—C10B—C20B −179.8 (2)
C13A—C9A—C10A—C11A −176.8 (2) C13B—C9B—C10B—C11B 178.4 (2)
C8A—C9A—C10A—C11A 58.2 (3) C8B—C9B—C10B—C11B −56.7 (3)
C20A—C10A—C11A—O1A 20.7 (3) C20B—C10B—C11B—O1B −26.1 (3)
C9A—C10A—C11A—O1A 145.4 (3) C9B—C10B—C11B—O1B −150.5 (3)
C20A—C10A—C11A—C12A −162.1 (2) C20B—C10B—C11B—C12B 157.3 (2)
C9A—C10A—C11A—C12A −37.4 (3) C9B—C10B—C11B—C12B 32.9 (3)
C6A—C7A—C12A—C11A −173.0 (2) C6B—C7B—C12B—C11B 174.0 (2)
C8A—C7A—C12A—C11A 4.1 (4) C8B—C7B—C12B—C11B −3.5 (4)
O1A—C11A—C12A—C7A −177.1 (3) O1B—C11B—C12B—C7B −178.7 (3)
C10A—C11A—C12A—C7A 5.7 (4) C10B—C11B—C12B—C7B −2.2 (4)
C10A—C9A—C13A—C14A 120.2 (3) C10B—C9B—C13B—C18B −115.0 (3)
C8A—C9A—C13A—C14A −116.8 (3) C8B—C9B—C13B—C18B 121.9 (3)
C10A—C9A—C13A—C18A −58.0 (3) C10B—C9B—C13B—C14B 63.9 (3)
C8A—C9A—C13A—C18A 65.0 (3) C8B—C9B—C13B—C14B −59.1 (3)
C18A—C13A—C14A—C15A −2.1 (4) C18B—C13B—C14B—C15B 0.3 (4)
C9A—C13A—C14A—C15A 179.6 (2) C9B—C13B—C14B—C15B −178.7 (2)
C13A—C14A—C15A—C16A 0.8 (4) C13B—C14B—C15B—C16B −0.6 (4)
C19A—O4A—C16A—C15A −1.1 (4) C19B—O4B—C16B—C17B 0.8 (4)
C19A—O4A—C16A—C17A 178.3 (3) C19B—O4B—C16B—C15B −179.9 (3)
C14A—C15A—C16A—O4A −179.8 (2) C14B—C15B—C16B—O4B −178.8 (2)
C14A—C15A—C16A—C17A 0.9 (4) C14B—C15B—C16B—C17B 0.5 (4)
O4A—C16A—C17A—C18A 179.4 (2) O4B—C16B—C17B—C18B 179.1 (2)
C15A—C16A—C17A—C18A −1.2 (4) C15B—C16B—C17B—C18B −0.2 (4)
C16A—C17A—C18A—C13A −0.2 (4) C14B—C13B—C18B—C17B 0.1 (4)
C14A—C13A—C18A—C17A 1.8 (4) C9B—C13B—C18B—C17B 179.1 (2)
C9A—C13A—C18A—C17A −180.0 (2) C16B—C17B—C18B—C13B −0.1 (4)
C21A—O3A—C20A—O2A 2.1 (4) C21B—O3B—C20B—O2B −1.6 (4)
C21A—O3A—C20A—C10A −176.8 (2) C21B—O3B—C20B—C10B 178.4 (2)
C11A—C10A—C20A—O2A −101.5 (3) C11B—C10B—C20B—O2B 107.5 (3)
C9A—C10A—C20A—O2A 136.1 (3) C9B—C10B—C20B—O2B −129.1 (3)
C11A—C10A—C20A—O3A 77.4 (3) C11B—C10B—C20B—O3B −72.5 (3)
C9A—C10A—C20A—O3A −45.0 (3) C9B—C10B—C20B—O3B 50.8 (3)
C20A—O3A—C21A—C22A −174.2 (2) C20B—O3B—C21B—C22B 168.0 (2)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C13A–C18A and C13B–C18B rings, respectively.

D—H···A D—H H···A D···A D—H···A
C5A—H5AA···O1Ai 0.95 2.41 3.210 (3) 141
C5B—H5BA···O1Bi 0.95 2.53 3.329 (3) 142
C14B—H14B···O2A 0.95 2.43 3.377 (3) 173
C17A—H17A···O2Bi 0.95 2.59 3.218 (4) 124
C21A—H21A···Cg1i 0.99 2.70 3.513 (3) 142
C21B—H21D···Cg2i 0.99 2.71 3.501 (3) 139

Symmetry code: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5518).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011a). Acta Cryst. E67, o334–o335. [DOI] [PMC free article] [PubMed]
  6. Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011b). Acta Cryst. E67, o336. [DOI] [PMC free article] [PubMed]
  7. Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011c). Acta Cryst. E67, o445–o446. [DOI] [PMC free article] [PubMed]
  8. Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2008). Acta Cryst. E64, o560. [DOI] [PMC free article] [PubMed]
  9. Fun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2008). Acta Cryst. E64, o2448. [DOI] [PMC free article] [PubMed]
  10. Padmavathi, V., Reddy, B. J. M., Balaiah, A., Reddy, K. V. & Reddy, D. B. (2000). Molecules, 5, 1281–1286.
  11. Senguttuvan, S. & Nagarajan, S. (2010). Int. J. Chem 2, 108–112.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Tanaka, M., Nara, F., Suzuki, K., Hosoya, T. & Ogita, T. (1997). J. Am. Chem. Soc. 119, 7871–7872.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) globl, I. DOI: 10.1107/S1600536812036446/lh5518sup1.cif

e-68-o2788-sup1.cif (44.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036446/lh5518Isup2.hkl

e-68-o2788-Isup2.hkl (275.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036446/lh5518Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES