Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 31;68(Pt 9):o2807. doi: 10.1107/S1600536812036501

Hexa­kis­(propyl­ammonium) benzene-1,2,4,5-tetra­carboxyl­ate 2,5-dicarb­oxy­benzene-1,4-carboxyl­ate tetra­hydrate

Sanaz Khorasani a, Manuel A Fernandes a,*
PMCID: PMC3435833  PMID: 22969679

Abstract

The title organic salt, 6C3H10N+·C10H2O8 4−·C10H4O8 2−·4H2O, contains seven independent entities in the asymmetric unit which comprises three propyl­ammonium cations, two water mol­ecules, half a 2,5-dicarb­oxy­benzene-1,4-carboxyl­ate dianion (H2btc2−) and half a benzene-1,2,4,5-tetra­carboxyl­ate tetra­anion (btc4−), the latter two anions being located about centres of inversion. One of the water mol­ecules is disordered over two positions in a 0.55 (2):0.45 (2) ratio. The combination of mol­ecular ions and water mol­ecules results in an extensive and complex three-dimensional network of hydrogen bonds, the network being made up of nine unique N—H⋯O inter­actions between the ammonium cations and the anions, as well as four unique O—H⋯O inter­actions between the water mol­ecules and the anions.

Related literature  

For studies involving hydrogen-bonding inter­actions, see: Pimentel & McClellan (1960); Lemmerer (2011); Arora & Pedireddi (2003); Biradha & Zaworotko (1998). For graph-set motifs in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-68-o2807-scheme1.jpg

Experimental  

Crystal data  

  • 6C3H10N+·C10H2O8 4−·C10H4O8 2−·4H2O

  • M r = 935.03

  • Triclinic, Inline graphic

  • a = 9.9826 (2) Å

  • b = 11.0994 (2) Å

  • c = 12.4453 (2) Å

  • α = 107.461 (1)°

  • β = 90.062 (1)°

  • γ = 105.721 (1)°

  • V = 1261.10 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.55 × 0.33 × 0.06 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • 41269 measured reflections

  • 6092 independent reflections

  • 4741 reflections with I > 2σ(I)

  • R int = 0.064

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.118

  • S = 1.10

  • 6092 reflections

  • 359 parameters

  • 36 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812036501/bh2430sup1.cif

e-68-o2807-sup1.cif (31.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036501/bh2430Isup2.hkl

e-68-o2807-Isup2.hkl (292.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1C—H1C⋯O1W 0.93 (1) 1.93 (1) 2.8293 (14) 162 (1)
N1D—H1F⋯O1B 0.98 (1) 1.77 (1) 2.7387 (14) 172 (1)
N1E—H1I⋯O4B 0.95 (1) 1.87 (1) 2.8197 (13) 179 (1)
N1C—H1B⋯O1B i 0.96 (1) 1.92 (1) 2.8598 (13) 167 (1)
N1C—H1D⋯O2B ii 0.94 (1) 1.80 (1) 2.7269 (13) 171 (1)
N1D—H1G⋯O3A iii 0.95 (1) 1.94 (1) 2.8725 (14) 167 (2)
N1D—H1E⋯O4A iv 0.98 (1) 1.79 (1) 2.7642 (14) 179 (2)
N1E—H1H⋯O2A iv 0.98 (1) 1.91 (1) 2.8493 (14) 159 (2)
N1E—H1J⋯O3B iii 0.97 (1) 1.75 (1) 2.7170 (13) 174 (1)
O1W—H1WB⋯O3A iii 0.880 (19) 1.94 (2) 2.8107 (14) 169.2 (17)
O1W—H1WA⋯O3B 0.958 (19) 1.796 (19) 2.7421 (14) 169.1 (16)
O1A—H1A⋯O2WB v 1.00 (2) 1.54 (2) 2.513 (4) 163.1 (19)
O1A—H1A⋯O2WA v 1.00 (2) 1.62 (2) 2.598 (5) 168.4 (19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the National Research Foundation, Pretoria (NRF, GUN 77122) and the University of the Witwatersrand.

supplementary crystallographic information

Comment

Intramolecular and intermolecular hydrogen bonding is of great importance in chemical and biological systems. In the crystal engineering field, hydrogen bonding plays an important role to organize molecules and assemble them to create supramolecules and control their dimensions in one-dimensional, two-dimensional, or three-dimensional networks (Lemmerer, 2011; Pimentel & McClellan, 1960; Arora & Pedireddi, 2003; Biradha & Zaworotko, 1998).

The title salt complex (Fig. 1) crystallizes in the centrosymmetric triclinic space group P-1 and contains seven independent entities per asymmetric unit: half a 2,5-dicarboxybenzene-1,4-carboxylate dianion (H2btc2-; molecule A), half a benzene-1,2,4,5-tetracarboxylate tetraanion (btc4-; molecule B), three propylammonium cations (molecules C, D and E), and two water molecules (Fig. 1). Both aromatic anions lie about inversion centres located at the centroids of the aromatic rings. One of the water molecules is disordered over two positions in a 0.55 (2):0.45 (2) ratio.

The crystal structure contains a very extensive hydrogen bonded network based on O—H···O and N—H···O interactions. Several of these involve water molecules. Water molecule O1W accepts a hydrogen from N1C located on propylammonium cation C (N1C—H1C···O1W), and donates H atoms to both aromatic anions (molecules A and B). It is therefore involved in hydrogen bonding to an ammonium cation and two aromatic anions (Fig. 2). Figure 3 shows the hydrogen bonding between the O2WA water molecule and adjacent aromatic anions. In this case the disordered water molecule only forms intermolecular hydrogen bonds with the aromatic anions as both donor and acceptor. Hydrogen bonds involving O2WA as hydrogen donor consist of O2WA—H2WA···O4B and O2WA—H2WB···O3A, and as acceptor consists of O1A—H1A···O2WA (Table 1). The combination of two O2WA water molecules and the two aromatic anions (molecules A and B) forms a hydrogen bonded ring described by the graph set R44(18) (Etter et al., 1990; Bernstein et al., 1995). This extends as a chain of rings along the a axis. There are no intramolecular hydrogen bonds in this structure due to the syn orientation of the carboxyl hydrogen atoms. Each of the three independent propylammonium cations (molecules C, D, and E) donate three hydrogen atoms to various molecules and hence do not participate in hydrogen bond interactions with each other. Cations D and E hydrogen bond exclusively to the two aromatic anions: cation D hydrogen bonds to one B tetraanion and two A dianions, while cation E hydrogen bonds to one A dianion and two B tetraanions. The environment around propylammonium cation C is different from D and E in that it is involved in hydrogen bonding to a water molecule in addition to two B tetraanions.

Experimental

The title organic salt was synthesized by reacting propylamine (0.27 g) with pyromellitic dianhydride (0.50 g) in the presence of THF (5 ml; not anhydrous) as a solvent, at room temperature – the presence of water resulting in ring opening of the pyromellitic dianhydride and subsequent salt formation. The solid was filtered and recrystallized in methanol, yielding colourless crystals suitable for analysis by X-ray diffraction.

Refinement

All H atoms attached to C atoms were positioned geometrically, and allowed to ride on their parent atoms, with C—H bond lengths of 0.95 (aromatic CH), 0.99 (methylene CH2), or 0.98 Å (methyl CH3), and isotropic displacement parameters set to 1.2 (CH and CH2) or 1.5 times (CH3) the Ueq of the parent atom. Amine H atoms were placed from the difference map and refined freely. SADI (SAme DIstance restraint; Sheldrick, 2008) was used in the final refinements to restrain all the N—H bond lengths to reasonable values. Water H atoms were placed from the difference map and refined freely. One of the water molecules is disordered over two positions, O2WA and O2WB, in a 0.55 (2):0.45 (2) ratio.

Figures

Fig. 1.

Fig. 1.

Molecules in the structure of title salt complex. Only the asymmetric unit atoms have been labeled. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been drawn with spheres of arbitrary radius.

Fig. 2.

Fig. 2.

O—H···O and N—H···O hydrogen bond interactions between the water molecule O1W, the aromatic dianion (molecule A), the aromatic tetraanion (molecule B), and a propylamonium cation (molecule C).

Fig. 3.

Fig. 3.

Hydrogen bond environment around the water molecule O2W. Here the water molecule hydrogen bonds to two aromatic dianions (molecule A) as both H-bond acceptor and donor. It also H-bonds to two aromatic tetra-anion molecules as H-bond donor. The combination of these interactions results in a R44 (18) ring which extends along the a axis upon translation of the unit cell.

Crystal data

6C3H10N+·C10H2O84·C10H4O82·4H2O Z = 1
Mr = 935.03 F(000) = 504
Triclinic, P1 Dx = 1.231 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.9826 (2) Å Cell parameters from 8121 reflections
b = 11.0994 (2) Å θ = 2.2–27.2°
c = 12.4453 (2) Å µ = 0.10 mm1
α = 107.461 (1)° T = 173 K
β = 90.062 (1)° Block, colourless
γ = 105.721 (1)° 0.55 × 0.33 × 0.06 mm
V = 1261.10 (4) Å3

Data collection

Bruker APEXII CCD diffractometer 4741 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.064
Graphite monochromator θmax = 28.0°, θmin = 1.7°
φ and ω scans h = −13→13
41269 measured reflections k = −14→14
6092 independent reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.0131P] where P = (Fo2 + 2Fc2)/3
6092 reflections (Δ/σ)max < 0.001
359 parameters Δρmax = 0.40 e Å3
36 restraints Δρmin = −0.21 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1A 0.22708 (12) 0.52580 (12) −0.14299 (10) 0.0232 (2)
C2A 0.11213 (11) 0.51156 (11) −0.06610 (9) 0.0200 (2)
C3A 0.12378 (11) 0.47733 (11) 0.03189 (9) 0.0205 (2)
C4A 0.25248 (12) 0.44589 (12) 0.06613 (10) 0.0244 (2)
C5A 0.01039 (11) 0.46641 (11) 0.09698 (9) 0.0211 (2)
H5A 0.0172 0.4434 0.1640 0.025*
O1A 0.33910 (9) 0.62170 (11) −0.09776 (8) 0.0409 (3)
O2A 0.20978 (11) 0.45663 (10) −0.24006 (8) 0.0426 (3)
O3A 0.28839 (9) 0.48363 (9) 0.17124 (7) 0.0290 (2)
O4A 0.31169 (11) 0.38559 (12) −0.00919 (8) 0.0481 (3)
H1A 0.410 (2) 0.627 (2) −0.1536 (17) 0.073 (6)*
C1B 0.54388 (12) 0.25468 (10) 0.46362 (9) 0.0198 (2)
C2B 0.51859 (11) 0.12374 (10) 0.48550 (9) 0.0177 (2)
C3B 0.38802 (11) 0.05553 (10) 0.50875 (9) 0.0179 (2)
C4B 0.26512 (11) 0.11247 (10) 0.52874 (9) 0.0194 (2)
C5B 0.37135 (11) −0.06751 (10) 0.52237 (9) 0.0185 (2)
H5B 0.2825 −0.1145 0.5374 0.022*
O1B 0.27743 (8) 0.21010 (8) 0.61637 (6) 0.02247 (18)
O2B 0.15747 (9) 0.05801 (9) 0.46345 (8) 0.0351 (2)
O3B 0.66579 (9) 0.33107 (8) 0.49001 (8) 0.0317 (2)
O4B 0.44488 (8) 0.27684 (8) 0.41868 (7) 0.02546 (19)
C6C 1.00660 (13) 0.14661 (13) 0.78897 (10) 0.0302 (3)
H6A 1.0776 0.2198 0.8437 0.036*
H6B 1.0366 0.0657 0.7751 0.036*
C7C 0.86828 (17) 0.1274 (2) 0.83874 (14) 0.0518 (4)
H7A 0.7957 0.0592 0.7818 0.062*
H7B 0.8419 0.2107 0.8583 0.062*
C8C 0.8738 (3) 0.0858 (3) 0.94401 (18) 0.0825 (7)
H8A 0.8858 −0.0028 0.9229 0.124*
H8B 0.7865 0.0856 0.9800 0.124*
H8C 0.9526 0.1479 0.9970 0.124*
N1C 0.99833 (11) 0.17678 (10) 0.68130 (9) 0.0237 (2)
H1B 1.0887 (13) 0.1969 (15) 0.6545 (12) 0.041 (4)*
H1C 0.9581 (15) 0.2445 (13) 0.6863 (13) 0.039 (4)*
H1D 0.9397 (15) 0.1009 (13) 0.6289 (11) 0.042 (4)*
C6D 0.51159 (14) 0.19783 (14) 0.81853 (11) 0.0342 (3)
H6C 0.5811 0.2313 0.8851 0.041*
H6D 0.5588 0.1649 0.7506 0.041*
C7D 0.39438 (16) 0.08625 (15) 0.83184 (13) 0.0429 (4)
H7C 0.3219 0.0568 0.7678 0.051*
H7D 0.3511 0.1179 0.9024 0.051*
C8D 0.4457 (2) −0.02982 (18) 0.83571 (15) 0.0575 (5)
H8D 0.4885 −0.0615 0.7658 0.086*
H8E 0.3666 −0.1009 0.8431 0.086*
H8F 0.5151 −0.0017 0.9007 0.086*
N1D 0.45926 (11) 0.30762 (11) 0.80741 (9) 0.0308 (2)
H1G 0.5358 (15) 0.3796 (14) 0.8062 (13) 0.044 (4)*
H1E 0.4074 (17) 0.3349 (17) 0.8726 (12) 0.056 (5)*
H1F 0.4011 (15) 0.2756 (15) 0.7358 (10) 0.041 (4)*
C6E 0.11925 (13) 0.35625 (13) 0.48083 (10) 0.0287 (3)
H6E 0.0610 0.4160 0.5112 0.034*
H6F 0.0832 0.2764 0.5041 0.034*
C7E 0.10636 (16) 0.31785 (16) 0.35439 (12) 0.0434 (4)
H7E 0.1654 0.2589 0.3237 0.052*
H7F 0.1405 0.3977 0.3308 0.052*
C8E −0.04440 (17) 0.24798 (18) 0.30615 (14) 0.0538 (4)
H8G −0.0790 0.1700 0.3308 0.081*
H8H −0.0493 0.2210 0.2234 0.081*
H8I −0.1020 0.3079 0.3332 0.081*
N1E 0.26635 (11) 0.42296 (10) 0.53008 (9) 0.0240 (2)
H1H 0.2706 (18) 0.4358 (17) 0.6115 (10) 0.054 (5)*
H1I 0.3266 (14) 0.3730 (14) 0.4935 (12) 0.038 (4)*
H1J 0.2960 (15) 0.5099 (11) 0.5212 (11) 0.032 (4)*
O1W 0.82657 (12) 0.33934 (11) 0.67230 (10) 0.0453 (3)
H1WA 0.7720 (18) 0.3259 (17) 0.6042 (15) 0.055 (5)*
H1WB 0.7964 (18) 0.3927 (19) 0.7282 (15) 0.056 (5)*
O2WA 0.5131 (5) 0.6023 (11) 0.7471 (7) 0.0361 (15) 0.55 (2)
O2WB 0.5446 (9) 0.6686 (15) 0.7894 (10) 0.042 (2) 0.45 (2)
H2WA 0.534 (2) 0.662 (2) 0.7082 (18) 0.070 (6)*
H2WB 0.589 (2) 0.606 (2) 0.7792 (17) 0.056 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0222 (6) 0.0280 (6) 0.0230 (6) 0.0108 (5) 0.0057 (4) 0.0098 (5)
C2A 0.0189 (5) 0.0224 (5) 0.0172 (5) 0.0067 (4) 0.0027 (4) 0.0035 (4)
C3A 0.0192 (5) 0.0227 (6) 0.0185 (5) 0.0071 (4) 0.0008 (4) 0.0038 (4)
C4A 0.0205 (5) 0.0312 (6) 0.0247 (6) 0.0097 (5) 0.0031 (4) 0.0113 (5)
C5A 0.0215 (5) 0.0247 (6) 0.0173 (5) 0.0075 (4) 0.0013 (4) 0.0061 (4)
O1A 0.0236 (5) 0.0557 (6) 0.0325 (5) −0.0013 (4) 0.0075 (4) 0.0093 (5)
O2A 0.0454 (6) 0.0454 (6) 0.0258 (5) 0.0064 (5) 0.0159 (4) 0.0005 (4)
O3A 0.0256 (4) 0.0408 (5) 0.0241 (4) 0.0149 (4) −0.0009 (3) 0.0104 (4)
O4A 0.0478 (6) 0.0829 (8) 0.0320 (5) 0.0482 (6) 0.0138 (4) 0.0180 (5)
C1B 0.0254 (6) 0.0176 (5) 0.0188 (5) 0.0095 (4) 0.0049 (4) 0.0062 (4)
C2B 0.0209 (5) 0.0161 (5) 0.0169 (5) 0.0069 (4) 0.0021 (4) 0.0045 (4)
C3B 0.0202 (5) 0.0168 (5) 0.0168 (5) 0.0073 (4) 0.0005 (4) 0.0036 (4)
C4B 0.0190 (5) 0.0168 (5) 0.0247 (5) 0.0061 (4) 0.0040 (4) 0.0088 (4)
C5B 0.0186 (5) 0.0168 (5) 0.0199 (5) 0.0046 (4) 0.0036 (4) 0.0059 (4)
O1B 0.0239 (4) 0.0215 (4) 0.0227 (4) 0.0110 (3) 0.0034 (3) 0.0039 (3)
O2B 0.0233 (4) 0.0268 (5) 0.0467 (5) 0.0094 (4) −0.0095 (4) −0.0029 (4)
O3B 0.0302 (5) 0.0196 (4) 0.0453 (5) 0.0012 (4) −0.0054 (4) 0.0156 (4)
O4B 0.0277 (4) 0.0292 (4) 0.0293 (4) 0.0152 (4) 0.0071 (3) 0.0169 (4)
C6C 0.0317 (7) 0.0317 (7) 0.0294 (6) 0.0119 (5) 0.0014 (5) 0.0103 (5)
C7C 0.0448 (9) 0.0760 (12) 0.0487 (9) 0.0236 (8) 0.0202 (7) 0.0341 (9)
C8C 0.0876 (15) 0.121 (2) 0.0633 (13) 0.0335 (14) 0.0300 (11) 0.0605 (14)
N1C 0.0218 (5) 0.0231 (5) 0.0249 (5) 0.0074 (4) 0.0028 (4) 0.0044 (4)
C6D 0.0303 (7) 0.0449 (8) 0.0270 (6) 0.0162 (6) 0.0000 (5) 0.0059 (6)
C7D 0.0480 (9) 0.0474 (9) 0.0357 (7) 0.0175 (7) 0.0105 (6) 0.0130 (7)
C8D 0.0827 (13) 0.0550 (10) 0.0442 (9) 0.0288 (9) 0.0124 (9) 0.0212 (8)
N1D 0.0248 (5) 0.0359 (6) 0.0268 (6) 0.0090 (5) 0.0018 (4) 0.0024 (5)
C6E 0.0285 (6) 0.0297 (6) 0.0328 (7) 0.0115 (5) 0.0082 (5) 0.0140 (5)
C7E 0.0422 (8) 0.0494 (9) 0.0337 (7) −0.0008 (7) 0.0014 (6) 0.0182 (7)
C8E 0.0459 (9) 0.0584 (10) 0.0482 (9) 0.0011 (8) −0.0083 (7) 0.0161 (8)
N1E 0.0296 (5) 0.0201 (5) 0.0264 (5) 0.0104 (4) 0.0062 (4) 0.0100 (4)
O1W 0.0521 (6) 0.0462 (6) 0.0359 (6) 0.0330 (5) −0.0143 (5) −0.0066 (5)
O2WA 0.0229 (13) 0.063 (4) 0.042 (2) 0.0199 (17) 0.0125 (14) 0.038 (3)
O2WB 0.032 (2) 0.072 (5) 0.048 (3) 0.030 (3) 0.020 (2) 0.042 (4)

Geometric parameters (Å, º)

C1A—O2A 1.2041 (14) N1C—H1C 0.930 (12)
C1A—O1A 1.3017 (15) N1C—H1D 0.938 (11)
C1A—C2A 1.5007 (15) C6D—N1D 1.4910 (18)
C2A—C5Ai 1.3859 (15) C6D—C7D 1.506 (2)
C2A—C3A 1.3953 (15) C6D—H6C 0.9900
C3A—C5A 1.3923 (15) C6D—H6D 0.9900
C3A—C4A 1.5117 (16) C7D—C8D 1.523 (2)
C4A—O4A 1.2309 (15) C7D—H7C 0.9900
C4A—O3A 1.2665 (14) C7D—H7D 0.9900
C5A—C2Ai 1.3859 (15) C8D—H8D 0.9800
C5A—H5A 0.9500 C8D—H8E 0.9800
O1A—H1A 1.00 (2) C8D—H8F 0.9800
C1B—O4B 1.2504 (13) N1D—H1G 0.948 (12)
C1B—O3B 1.2572 (14) N1D—H1E 0.978 (12)
C1B—C2B 1.5128 (15) N1D—H1F 0.977 (11)
C2B—C5Bii 1.3933 (15) C6E—N1E 1.4889 (16)
C2B—C3B 1.3976 (15) C6E—C7E 1.4973 (18)
C3B—C5B 1.3920 (15) C6E—H6E 0.9900
C3B—C4B 1.5142 (14) C6E—H6F 0.9900
C4B—O2B 1.2376 (14) C7E—C8E 1.521 (2)
C4B—O1B 1.2638 (13) C7E—H7E 0.9900
C5B—C2Bii 1.3933 (15) C7E—H7F 0.9900
C5B—H5B 0.9500 C8E—H8G 0.9800
C6C—N1C 1.4827 (15) C8E—H8H 0.9800
C6C—C7C 1.5024 (19) C8E—H8I 0.9800
C6C—H6A 0.9900 N1E—H1H 0.979 (12)
C6C—H6B 0.9900 N1E—H1I 0.952 (11)
C7C—C8C 1.519 (2) N1E—H1J 0.970 (11)
C7C—H7A 0.9900 O1W—H1WA 0.958 (19)
C7C—H7B 0.9900 O1W—H1WB 0.880 (19)
C8C—H8A 0.9800 O2WA—H2WA 0.91 (2)
C8C—H8B 0.9800 O2WA—H2WB 0.84 (2)
C8C—H8C 0.9800 O2WB—H2WA 1.00 (2)
N1C—H1B 0.955 (12) O2WB—H2WB 0.89 (2)
O2A—C1A—O1A 124.64 (11) H1B—N1C—H1D 109.4 (13)
O2A—C1A—C2A 120.64 (11) H1C—N1C—H1D 106.6 (13)
O1A—C1A—C2A 114.60 (10) N1D—C6D—C7D 111.46 (11)
C5Ai—C2A—C3A 120.07 (10) N1D—C6D—H6C 109.3
C5Ai—C2A—C1A 116.65 (10) C7D—C6D—H6C 109.3
C3A—C2A—C1A 123.27 (10) N1D—C6D—H6D 109.3
C5A—C3A—C2A 118.52 (10) C7D—C6D—H6D 109.3
C5A—C3A—C4A 119.36 (10) H6C—C6D—H6D 108.0
C2A—C3A—C4A 122.06 (10) C6D—C7D—C8D 111.73 (13)
O4A—C4A—O3A 126.02 (11) C6D—C7D—H7C 109.3
O4A—C4A—C3A 117.91 (10) C8D—C7D—H7C 109.3
O3A—C4A—C3A 116.06 (10) C6D—C7D—H7D 109.3
C2Ai—C5A—C3A 121.40 (10) C8D—C7D—H7D 109.3
C2Ai—C5A—H5A 119.3 H7C—C7D—H7D 107.9
C3A—C5A—H5A 119.3 C7D—C8D—H8D 109.5
C1A—O1A—H1A 110.4 (11) C7D—C8D—H8E 109.5
O4B—C1B—O3B 125.49 (10) H8D—C8D—H8E 109.5
O4B—C1B—C2B 118.29 (10) C7D—C8D—H8F 109.5
O3B—C1B—C2B 116.19 (9) H8D—C8D—H8F 109.5
C5Bii—C2B—C3B 119.25 (10) H8E—C8D—H8F 109.5
C5Bii—C2B—C1B 118.35 (9) C6D—N1D—H1G 109.7 (10)
C3B—C2B—C1B 122.35 (10) C6D—N1D—H1E 108.3 (11)
C5B—C3B—C2B 118.92 (10) H1G—N1D—H1E 109.5 (14)
C5B—C3B—C4B 117.47 (9) C6D—N1D—H1F 107.8 (9)
C2B—C3B—C4B 123.45 (9) H1G—N1D—H1F 109.1 (13)
O2B—C4B—O1B 123.98 (10) H1E—N1D—H1F 112.5 (14)
O2B—C4B—C3B 119.26 (10) N1E—C6E—C7E 112.22 (10)
O1B—C4B—C3B 116.65 (9) N1E—C6E—H6E 109.2
C3B—C5B—C2Bii 121.83 (10) C7E—C6E—H6E 109.2
C3B—C5B—H5B 119.1 N1E—C6E—H6F 109.2
C2Bii—C5B—H5B 119.1 C7E—C6E—H6F 109.2
N1C—C6C—C7C 111.51 (11) H6E—C6E—H6F 107.9
N1C—C6C—H6A 109.3 C6E—C7E—C8E 111.17 (13)
C7C—C6C—H6A 109.3 C6E—C7E—H7E 109.4
N1C—C6C—H6B 109.3 C8E—C7E—H7E 109.4
C7C—C6C—H6B 109.3 C6E—C7E—H7F 109.4
H6A—C6C—H6B 108.0 C8E—C7E—H7F 109.4
C6C—C7C—C8C 111.48 (15) H7E—C7E—H7F 108.0
C6C—C7C—H7A 109.3 C7E—C8E—H8G 109.5
C8C—C7C—H7A 109.3 C7E—C8E—H8H 109.5
C6C—C7C—H7B 109.3 H8G—C8E—H8H 109.5
C8C—C7C—H7B 109.3 C7E—C8E—H8I 109.5
H7A—C7C—H7B 108.0 H8G—C8E—H8I 109.5
C7C—C8C—H8A 109.5 H8H—C8E—H8I 109.5
C7C—C8C—H8B 109.5 C6E—N1E—H1H 108.8 (10)
H8A—C8C—H8B 109.5 C6E—N1E—H1I 110.5 (9)
C7C—C8C—H8C 109.5 H1H—N1E—H1I 111.7 (13)
H8A—C8C—H8C 109.5 C6E—N1E—H1J 109.6 (9)
H8B—C8C—H8C 109.5 H1H—N1E—H1J 106.8 (13)
C6C—N1C—H1B 110.5 (9) H1I—N1E—H1J 109.4 (12)
C6C—N1C—H1C 113.5 (9) H1WA—O1W—H1WB 107.7 (15)
H1B—N1C—H1C 110.0 (13) H2WA—O2WA—H2WB 106.7 (19)
C6C—N1C—H1D 106.7 (9) H2WA—O2WB—H2WB 96 (2)
O2A—C1A—C2A—C5Ai −60.87 (16) O4B—C1B—C2B—C3B −30.62 (15)
O1A—C1A—C2A—C5Ai 115.26 (12) O3B—C1B—C2B—C3B 151.27 (11)
O2A—C1A—C2A—C3A 118.78 (14) C5Bii—C2B—C3B—C5B −0.60 (17)
O1A—C1A—C2A—C3A −65.09 (15) C1B—C2B—C3B—C5B 176.82 (9)
C5Ai—C2A—C3A—C5A −0.15 (18) C5Bii—C2B—C3B—C4B 174.69 (9)
C1A—C2A—C3A—C5A −179.80 (10) C1B—C2B—C3B—C4B −7.88 (16)
C5Ai—C2A—C3A—C4A 176.98 (10) C5B—C3B—C4B—O2B −66.68 (14)
C1A—C2A—C3A—C4A −2.66 (17) C2B—C3B—C4B—O2B 117.96 (12)
C5A—C3A—C4A—O4A 140.12 (12) C5B—C3B—C4B—O1B 109.48 (11)
C2A—C3A—C4A—O4A −36.99 (17) C2B—C3B—C4B—O1B −65.87 (14)
C5A—C3A—C4A—O3A −39.17 (16) C2B—C3B—C5B—C2Bii 0.62 (17)
C2A—C3A—C4A—O3A 143.72 (11) C4B—C3B—C5B—C2Bii −174.96 (9)
C2A—C3A—C5A—C2Ai 0.16 (18) N1C—C6C—C7C—C8C 175.47 (16)
C4A—C3A—C5A—C2Ai −177.05 (10) N1D—C6D—C7D—C8D 176.37 (11)
O4B—C1B—C2B—C5Bii 146.82 (10) N1E—C6E—C7E—C8E 179.07 (13)
O3B—C1B—C2B—C5Bii −31.29 (14)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1C—H1C···O1W 0.93 (1) 1.93 (1) 2.8293 (14) 162 (1)
N1D—H1F···O1B 0.98 (1) 1.77 (1) 2.7387 (14) 172 (1)
N1E—H1I···O4B 0.95 (1) 1.87 (1) 2.8197 (13) 179 (1)
N1C—H1B···O1Biii 0.96 (1) 1.92 (1) 2.8598 (13) 167 (1)
N1C—H1D···O2Bii 0.94 (1) 1.80 (1) 2.7269 (13) 171 (1)
N1D—H1G···O3Aiv 0.95 (1) 1.94 (1) 2.8725 (14) 167 (2)
N1D—H1E···O4Av 0.98 (1) 1.79 (1) 2.7642 (14) 179 (2)
N1E—H1H···O2Av 0.98 (1) 1.91 (1) 2.8493 (14) 159 (2)
N1E—H1J···O3Biv 0.97 (1) 1.75 (1) 2.7170 (13) 174 (1)
O1W—H1WB···O3Aiv 0.880 (19) 1.94 (2) 2.8107 (14) 169.2 (17)
O1W—H1WA···O3B 0.958 (19) 1.796 (19) 2.7421 (14) 169.1 (16)
O1A—H1A···O2WBvi 1.00 (2) 1.54 (2) 2.513 (4) 163.1 (19)
O1A—H1A···O2WAvi 1.00 (2) 1.62 (2) 2.598 (5) 168.4 (19)

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1; (v) x, y, z+1; (vi) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2430).

References

  1. Arora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 68, 9177–9185. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Biradha, K. & Zaworotko, M. J. (1998). Cryst. Eng. 1, 67–78.
  4. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Keller, E. (1999). SCHAKAL99 University of Freiberg, Germany.
  8. Lemmerer, A. (2011). Cryst. Growth Des. 11, 583–593.
  9. Pimentel, G. C. & McClellan, A. L. (1960). In The Hydrogen Bond San Francisco: Freeman.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812036501/bh2430sup1.cif

e-68-o2807-sup1.cif (31.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036501/bh2430Isup2.hkl

e-68-o2807-Isup2.hkl (292.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES