Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 31;68(Pt 9):o2808. doi: 10.1107/S1600536812036562

2-Amino-6-(quinoline-2-carboxamido)­pyridinium nitrate

Phillipus C W Van der Berg a,*, Hendrik G Visser a, Andreas Roodt a
PMCID: PMC3435834  PMID: 22969680

Abstract

In the title salt, C15H13N4O+·NO3 , an extensive network of N—H⋯N, N—H⋯O and C—H⋯O hydrogen-bond inter­actions are observed throughout the structure. Further stabilization is obtained by π–π stacking inter­actions between inversion-related quinoline systems and inversion-related pyridine rings, with respective centroid–centroid distances of 3.5866 (6) and 3.3980 (6) Å.

Related literature  

For related radiopharmaceutical structures, see: Al-Dajani et al. (2010); Jain et al. (2004); Van der Berg et al. (2011).graphic file with name e-68-o2808-scheme1.jpg

Experimental  

Crystal data  

  • C15H13N4O+·NO3

  • M r = 327.30

  • Monoclinic, Inline graphic

  • a = 8.183 (2) Å

  • b = 11.768 (3) Å

  • c = 14.979 (4) Å

  • β = 98.37 (1)°

  • V = 1427.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.49 × 0.41 × 0.31 mm

Data collection  

  • Bruker X8 APEXII KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.990, T max = 0.994

  • 26710 measured reflections

  • 3555 independent reflections

  • 3180 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.1

  • S = 1.04

  • 3555 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812036562/pk2439sup1.cif

e-68-o2808-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036562/pk2439Isup2.hkl

e-68-o2808-Isup2.hkl (170.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036562/pk2439Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.892 (18) 2.019 (19) 2.8721 (14) 159.7 (16)
N1—H1B⋯O4i 0.836 (19) 2.204 (19) 3.0202 (14) 165.1 (16)
N2—H2A⋯O1 0.848 (19) 1.984 (18) 2.6458 (12) 134.1 (16)
N2—H2A⋯O3 0.848 (19) 2.496 (18) 3.2058 (12) 141.7 (15)
N3—H3A⋯O3ii 0.857 (17) 2.153 (17) 2.9652 (12) 158.2 (15)
N3—H3A⋯N4 0.857 (17) 2.288 (16) 2.6879 (15) 108.7 (13)
C4—H4⋯O3ii 0.93 2.44 3.1947 (14) 138
C11—H11⋯O4iii 0.93 2.53 3.3460 (14) 147
C12—H12⋯O2iv 0.93 2.5 3.2901 (14) 142
C14—H14⋯O2ii 0.93 2.55 3.1840 (14) 126

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors would like to thank the Department of Chemistry of the University of the Free State, the NRF, NTeMBI, THRIP and Sasol Ltd for funding.

supplementary crystallographic information

Comment

The title compound was synthesized as a ligand for potential use in medical and radiopharmaceutical applications. The asymmetric unit in the title compound contains a C15H13N4O cation and a NO3- counter ion. A range of N—H···N, N—H···O and C—H···O hydrogen interactions are observed throughout the structure. Further stabilization of the crystal structure is obtained by π-π stacking interactions between inversion-related quinolines and inversion-related pyridines with respective centroid-to-centroid distances of 3.5866 (6) Å and 3.3980 (6) Å (see Fig. 2). For similar structures that form part of our radiopharmaceutical research see: Al-Dajani et al. (2010); Jain et al. (2004) and Van der Berg et al. (2011).

Experimental

Under oxygen atmosphere: Quinaldic acid (0.8013 g, 4.627 mmol) was added as a solid in one portion to a suspension of 2,6-diaminopyridine (0.5000 g, 4.582 mmol) in pyridine (10 ml) and the mixture was stirred at 40 °C for 40 min. Triphenylphosphite (10 ml) was added dropwise over 10 minutes, after which the temperature was increased to 90–100 °C and stirred for a further 24 h. On cooling the precipitate was filtered, washed with H2O (50 ml) and then MeOH (50 ml). The product was dissolved in diluted HNO3 and left to stand at room temperature. Yellow crystals were obtained after five days.

Refinement

The N-bound hydrogen atoms were located in a difference Fourier map and refined freely. The remaining H atoms were placed in geometrically idealized positions at C—H = 0.93 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Representation of the title compound, showing displacement ellipsoids (50% probability).

Fig. 2.

Fig. 2.

Packing and illustration of π-π stacking in the crystal.

Crystal data

C15H13N4O+·NO3 F(000) = 680
Mr = 327.30 Dx = 1.523 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9936 reflections
a = 8.183 (2) Å θ = 2.2–28.3°
b = 11.768 (3) Å µ = 0.12 mm1
c = 14.979 (4) Å T = 100 K
β = 98.37 (1)° Cuboid, yellow
V = 1427.1 (6) Å3 0.49 × 0.41 × 0.31 mm
Z = 4

Data collection

Bruker X8 APEXII KappaCCD diffractometer 3555 independent reflections
Radiation source: sealed tube 3180 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
φ and ω scans θmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→10
Tmin = 0.990, Tmax = 0.994 k = −15→15
26710 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.1 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.6672P] where P = (Fo2 + 2Fc2)/3
3555 reflections (Δ/σ)max = 0.001
233 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 30 s/frame. A total of 1759 frames were collected with a frame width of 0.5° covering up to θ = 28.28° with 100.00% completeness accomplished.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C5 0.44014 (13) 0.29849 (9) 1.00107 (7) 0.0136 (2)
C4 0.36313 (14) 0.35271 (9) 0.92503 (7) 0.0165 (2)
H4 0.3674 0.323 0.8679 0.02*
C3 0.27835 (14) 0.45365 (10) 0.93606 (8) 0.0190 (2)
H3 0.2243 0.4909 0.8854 0.023*
C2 0.27319 (14) 0.49912 (10) 1.02018 (8) 0.0191 (2)
H2 0.2165 0.5665 1.0263 0.023*
C1 0.35435 (13) 0.44278 (9) 1.09694 (8) 0.0161 (2)
C6 0.61016 (12) 0.13855 (9) 1.06647 (7) 0.0130 (2)
C7 0.70961 (12) 0.03990 (9) 1.04078 (7) 0.0128 (2)
C8 0.80954 (13) −0.01866 (9) 1.11085 (7) 0.0148 (2)
H8 0.812 0.0028 1.1708 0.018*
C9 0.90254 (13) −0.10779 (9) 1.08810 (7) 0.0156 (2)
H9 0.9709 −0.1475 1.1325 0.019*
C10 0.89350 (13) −0.13878 (9) 0.99620 (7) 0.0143 (2)
C11 0.98613 (14) −0.23014 (10) 0.96740 (8) 0.0182 (2)
H11 1.0548 −0.2727 1.0098 0.022*
C12 0.97515 (14) −0.25610 (10) 0.87763 (8) 0.0208 (2)
H12 1.0371 −0.3157 0.8593 0.025*
C13 0.86987 (14) −0.19264 (10) 0.81263 (8) 0.0196 (2)
H13 0.8633 −0.2111 0.7518 0.024*
C14 0.77756 (14) −0.10438 (9) 0.83805 (7) 0.0165 (2)
H14 0.7078 −0.064 0.7947 0.02*
C15 0.78850 (13) −0.07462 (9) 0.93054 (7) 0.0133 (2)
N1 0.36061 (13) 0.48153 (9) 1.18100 (7) 0.0199 (2)
N2 0.43161 (11) 0.34266 (8) 1.08430 (6) 0.01391 (19)
N3 0.53164 (11) 0.20051 (8) 0.99536 (6) 0.01377 (19)
N4 0.69803 (11) 0.01543 (7) 0.95409 (6) 0.01317 (18)
N5 0.68666 (12) 0.29972 (8) 1.29263 (6) 0.01620 (19)
O1 0.60217 (10) 0.16082 (7) 1.14574 (5) 0.01639 (17)
O2 0.75498 (11) 0.36208 (7) 1.24246 (6) 0.0224 (2)
O3 0.53418 (10) 0.31398 (7) 1.29794 (5) 0.01974 (18)
O4 0.76463 (11) 0.22297 (7) 1.33845 (6) 0.0228 (2)
H1B 0.326 (2) 0.5477 (16) 1.1861 (12) 0.033 (4)*
H1A 0.423 (2) 0.4444 (15) 1.2254 (12) 0.031 (4)*
H2A 0.481 (2) 0.3072 (15) 1.1296 (12) 0.032 (4)*
H3A 0.5452 (19) 0.1790 (14) 0.9423 (11) 0.026 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C5 0.0144 (4) 0.0117 (5) 0.0151 (5) −0.0008 (4) 0.0036 (4) −0.0006 (4)
C4 0.0196 (5) 0.0159 (5) 0.0139 (5) 0.0001 (4) 0.0027 (4) 0.0000 (4)
C3 0.0215 (5) 0.0168 (5) 0.0182 (5) 0.0031 (4) 0.0017 (4) 0.0045 (4)
C2 0.0230 (5) 0.0134 (5) 0.0212 (6) 0.0051 (4) 0.0045 (4) 0.0017 (4)
C1 0.0182 (5) 0.0131 (5) 0.0178 (5) 0.0006 (4) 0.0060 (4) −0.0002 (4)
C6 0.0127 (4) 0.0112 (5) 0.0152 (5) −0.0015 (4) 0.0018 (4) −0.0011 (4)
C7 0.0125 (5) 0.0111 (4) 0.0151 (5) −0.0010 (3) 0.0027 (4) −0.0007 (4)
C8 0.0152 (5) 0.0165 (5) 0.0129 (5) −0.0006 (4) 0.0025 (4) −0.0002 (4)
C9 0.0141 (5) 0.0165 (5) 0.0158 (5) 0.0010 (4) 0.0006 (4) 0.0031 (4)
C10 0.0125 (5) 0.0130 (5) 0.0177 (5) −0.0005 (4) 0.0034 (4) 0.0004 (4)
C11 0.0164 (5) 0.0160 (5) 0.0219 (6) 0.0037 (4) 0.0018 (4) 0.0007 (4)
C12 0.0198 (5) 0.0165 (5) 0.0268 (6) 0.0041 (4) 0.0062 (4) −0.0045 (4)
C13 0.0223 (5) 0.0198 (5) 0.0173 (5) 0.0010 (4) 0.0049 (4) −0.0043 (4)
C14 0.0191 (5) 0.0153 (5) 0.0150 (5) 0.0006 (4) 0.0018 (4) −0.0003 (4)
C15 0.0130 (4) 0.0115 (5) 0.0156 (5) −0.0008 (3) 0.0035 (4) −0.0001 (4)
N1 0.0288 (5) 0.0151 (5) 0.0166 (5) 0.0058 (4) 0.0059 (4) −0.0011 (4)
N2 0.0171 (4) 0.0119 (4) 0.0129 (4) 0.0021 (3) 0.0027 (3) 0.0005 (3)
N3 0.0175 (4) 0.0120 (4) 0.0122 (4) 0.0018 (3) 0.0033 (3) −0.0009 (3)
N4 0.0142 (4) 0.0111 (4) 0.0144 (4) −0.0003 (3) 0.0026 (3) −0.0008 (3)
N5 0.0221 (5) 0.0142 (4) 0.0121 (4) −0.0034 (3) 0.0016 (3) −0.0018 (3)
O1 0.0202 (4) 0.0155 (4) 0.0133 (4) 0.0019 (3) 0.0020 (3) −0.0023 (3)
O2 0.0317 (5) 0.0184 (4) 0.0195 (4) −0.0055 (3) 0.0111 (3) 0.0005 (3)
O3 0.0196 (4) 0.0234 (4) 0.0163 (4) −0.0020 (3) 0.0031 (3) −0.0002 (3)
O4 0.0269 (4) 0.0182 (4) 0.0206 (4) −0.0006 (3) −0.0052 (3) 0.0025 (3)

Geometric parameters (Å, º)

C5—N2 1.3618 (14) C9—H9 0.93
C5—C4 1.3758 (15) C10—C11 1.4183 (15)
C5—N3 1.3842 (13) C10—C15 1.4246 (15)
C4—C3 1.3974 (15) C11—C12 1.3690 (17)
C4—H4 0.93 C11—H11 0.93
C3—C2 1.3753 (16) C12—C13 1.4156 (17)
C3—H3 0.93 C12—H12 0.93
C2—C1 1.4073 (16) C13—C14 1.3704 (15)
C2—H2 0.93 C13—H13 0.93
C1—N1 1.3332 (15) C14—C15 1.4191 (15)
C1—N2 1.3633 (14) C14—H14 0.93
C6—O1 1.2270 (13) C15—N4 1.3680 (13)
C6—N3 1.3711 (14) N1—H1B 0.836 (19)
C6—C7 1.4997 (14) N1—H1A 0.892 (18)
C7—N4 1.3200 (13) N2—H2A 0.848 (19)
C7—C8 1.4125 (14) N3—H3A 0.857 (17)
C8—C9 1.3679 (15) N5—O2 1.2402 (12)
C8—H8 0.93 N5—O4 1.2516 (13)
C9—C10 1.4155 (15) N5—O3 1.2729 (13)
N2—C5—C4 120.18 (10) C11—C10—C15 119.15 (10)
N2—C5—N3 118.34 (9) C12—C11—C10 120.42 (10)
C4—C5—N3 121.46 (10) C12—C11—H11 119.8
C5—C4—C3 118.15 (10) C10—C11—H11 119.8
C5—C4—H4 120.9 C11—C12—C13 120.28 (10)
C3—C4—H4 120.9 C11—C12—H12 119.9
C2—C3—C4 121.40 (10) C13—C12—H12 119.9
C2—C3—H3 119.3 C14—C13—C12 120.90 (10)
C4—C3—H3 119.3 C14—C13—H13 119.5
C3—C2—C1 119.44 (10) C12—C13—H13 119.5
C3—C2—H2 120.3 C13—C14—C15 119.95 (10)
C1—C2—H2 120.3 C13—C14—H14 120
N1—C1—N2 118.16 (10) C15—C14—H14 120
N1—C1—C2 124.00 (10) N4—C15—C14 118.90 (10)
N2—C1—C2 117.84 (10) N4—C15—C10 121.82 (10)
O1—C6—N3 123.59 (10) C14—C15—C10 119.28 (10)
O1—C6—C7 121.40 (9) C1—N1—H1B 116.0 (12)
N3—C6—C7 115.01 (9) C1—N1—H1A 118.4 (11)
N4—C7—C8 125.13 (10) H1B—N1—H1A 123.6 (16)
N4—C7—C6 117.22 (9) C5—N2—C1 122.93 (10)
C8—C7—C6 117.65 (9) C5—N2—H2A 117.6 (12)
C9—C8—C7 118.16 (10) C1—N2—H2A 119.4 (12)
C9—C8—H8 120.9 C6—N3—C5 126.27 (9)
C7—C8—H8 120.9 C6—N3—H3A 117.0 (11)
C8—C9—C10 119.18 (10) C5—N3—H3A 116.6 (11)
C8—C9—H9 120.4 C7—N4—C15 117.29 (9)
C10—C9—H9 120.4 O2—N5—O4 121.37 (10)
C9—C10—C11 122.44 (10) O2—N5—O3 119.49 (9)
C9—C10—C15 118.40 (9) O4—N5—O3 119.14 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O3 0.892 (18) 2.019 (19) 2.8721 (14) 159.7 (16)
N1—H1B···O4i 0.836 (19) 2.204 (19) 3.0202 (14) 165.1 (16)
N2—H2A···O1 0.848 (19) 1.984 (18) 2.6458 (12) 134.1 (16)
N2—H2A···O3 0.848 (19) 2.496 (18) 3.2058 (12) 141.7 (15)
N3—H3A···O3ii 0.857 (17) 2.153 (17) 2.9652 (12) 158.2 (15)
N3—H3A···N4 0.857 (17) 2.288 (16) 2.6879 (15) 108.7 (13)
C4—H4···O3ii 0.93 2.44 3.1947 (14) 138
C11—H11···O4iii 0.93 2.53 3.3460 (14) 147
C12—H12···O2iv 0.93 2.5 3.2901 (14) 142
C14—H14···O2ii 0.93 2.55 3.1840 (14) 126

Symmetry codes: (i) −x+1, y+1/2, −z+5/2; (ii) x, −y+1/2, z−1/2; (iii) −x+2, y−1/2, −z+5/2; (iv) −x+2, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2439).

References

  1. Al-Dajani, M. T. M., Mohamed, N., Wahab, H. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2150. [DOI] [PMC free article] [PubMed]
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2011). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862–871. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Van der Berg, P. C. W., Visser, H. G. & Roodt, A. (2011). Acta Cryst. E67, o3130. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812036562/pk2439sup1.cif

e-68-o2808-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036562/pk2439Isup2.hkl

e-68-o2808-Isup2.hkl (170.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036562/pk2439Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES