Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Aug 31;68(Pt 9):o2816. doi: 10.1107/S1600536812036744

N-[4-(4-Nitro­phen­oxy)phen­yl]penta­n­amide

Asifan Nigar a, Zareen Akhter a,*, Vickie McKee b, Rizwan Hussain c
PMCID: PMC3435840  PMID: 22969686

Abstract

The asymmetric unit of the title compound, C17H18N2O4, contains two independent mol­ecules (A and B) differing principally in the conformations of the alkyl chains, anti for molecule A and gauche for molecule B. The dihedral angles between the aromatic rings are 82.51 (6) and 82.25 (6)° in the two molecules. In the crystal, amide–amide inter­actions (as N—H⋯O=C) results in distinct chains of A and B mol­ecules running parallel to the a-axis direction. C—H⋯O inter­actions also occur.

Related literature  

For the related structures N-(4-(4-nitro­phen­oxy)phen­yl)pro­pionamide, 4-nitro-N-(4-(4-nitro­phen­oxy)phen­yl)benzamide and N-[4-(4-nitro­phen­oxy)phen­yl]acetamide see: Nigar et al. (2008), Butt et al. (2007) and Nigar et al. (2012), respectively. graphic file with name e-68-o2816-scheme1.jpg

Experimental  

Crystal data  

  • C17H18N2O4

  • M r = 314.33

  • Triclinic, Inline graphic

  • a = 4.9776 (5) Å

  • b = 10.1139 (10) Å

  • c = 30.572 (3) Å

  • α = 92.069 (2)°

  • β = 90.087 (2)°

  • γ = 91.060 (2)°

  • V = 1537.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.33 × 0.32 × 0.13 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.968, T max = 0.987

  • 17614 measured reflections

  • 6018 independent reflections

  • 4664 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.135

  • S = 1.09

  • 6018 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker 1998); cell refinement: SAINT (Bruker 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ); molecular graphics: SHELXTL (Sheldrick, 2008b ) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036744/gg2093sup1.cif

e-68-o2816-sup1.cif (34KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036744/gg2093Isup2.hkl

e-68-o2816-Isup2.hkl (294.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036744/gg2093Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A1⋯O4A i 0.88 2.08 2.955 (2) 178
N2B—H2B1⋯O4B i 0.88 2.05 2.929 (2) 174
C3A—H3A⋯O1A ii 0.95 2.49 3.341 (3) 150
C5A—H5A⋯O2A iii 0.95 2.62 3.376 (3) 137
C3B—H3B⋯O1B iv 0.95 2.49 3.360 (3) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are grateful to the Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and the Chemistry Department, Loughborough University, Loughborough, England, for providing laboratory and analytical facilities.

supplementary crystallographic information

Comment

The crystal structure of N-[4-(4-Nitrophenoxy)phenyl]acetamide (Nigar et al.2012) has been published and is related to that of the title compound, (Fig. 1).

There are two independent molecules in the asymmetric unit, differing primarily in the conformations of the alkyl chains (Fig. 1). The unsaturated sections of the molecules have quite similar orientations, with interplanar angles between the mean planes of the two aromatic rings of 82.51 (6)° for the molecule with 'A' labels and 82.25 (6)° for the molecule with 'B' labels.

Each molecule is linked to two crystallographically identical molecules via H-bonding involving the amide groups (N—H ···O═C distances 2.956 (2) Å and 2.929 (2) Å for N2A···O4A and N2B···O4B respectively, both under symmetry operation x - 1, y, z). This results in separate H-bonded chains of 'A' and 'B' molecules running parallel to the a axis (Fig 2, Table 3).

The nitro groups are involved in weaker H-bonding to aromatic C—H groups. Each molecule 'A' makes four bonds with identical neighbours, linking the chains together (C3A—H···O1A 3.341 (3) Å under -x, 2 - y, 1 - z and C5A—H···O2A 3.376 (3) Å under 1 - x, 3 - y, 1 - z, Fig 3, Table 3). Molecule 'B' only forms one such interaction; C3B···O1B 3.360 (3) Å under -1 - x,-y,-z (Fig 4, Table 3).

Experimental

Synthesis ofN-[4-(4'-Nitrophenoxy)phenyl] pentanamide

A mixture of 2.50 g (25 mmol) 4-aminophenol, 3.46 g (25 mmol) anhydrous K2CO3 and 2.65 ml (25 mmol) 4-nitrofluorobenzene in 35 ml DMF was heated at 373 K for 18 h in an inert atmosphere. After cooling to room temperature, the reaction mixture was poured into 400 ml of water to yield a yellow solid. The product was filtered, dried, and then recrystallized from n-hexane (yield, 86%). In the second step, pentanoic acid and thionylchloride were refluxed in equimolar amounts for 30 min. The excessive amount of thionylchloride was rotary evaporated and pentanoylchloride obtained was reacted with 4-(4-nitrophenoxy) aniline, as prepared in the first step, in appropriate molar ratios. THF was used as solvent and 1 ml of triethylamine was also added for 1.0 g of 4-(4-nitrophenoxy) aniline. The reaction mixture was refluxed for 2 h under inert conditions and allowed to stand overnight at room temperature. The settled salt was filtered off and filtrate was evaporated to get the crude product, which was recrystallized from toluene (89% yield, m.p. 390 K)

Refinement

C-bound H atoms were positioned geometrically in ideal distances (0.95 Å for aromatic H and 0.98, 0.99 Å for aliphatic H) and treated as riding on their parent atoms. N-Bound atoms were positioned in a similar fashion at 0.88 Å.

Figures

Fig. 1.

Fig. 1.

Perspective view of the two independent molecules in the asymmetric unit. Thermal ellipsoids shown at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram showing the NH ··· O ═C H-bonds. Carbon atoms coloured according to symmetry equivalence.

Fig. 3.

Fig. 3.

C—H···O interactions between 'A' molecules.

Fig. 4.

Fig. 4.

C—H···O interactions between 'B' molecules.

Crystal data

C17H18N2O4 Z = 4
Mr = 314.33 F(000) = 664
Triclinic, P1 Dx = 1.358 Mg m3
Hall symbol: -P 1 Melting point: 390 K
a = 4.9776 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.1139 (10) Å Cell parameters from 4085 reflections
c = 30.572 (3) Å θ = 2.4–25.3°
α = 92.069 (2)° µ = 0.10 mm1
β = 90.087 (2)° T = 150 K
γ = 91.060 (2)° Wedge, brown
V = 1537.8 (3) Å3 0.33 × 0.32 × 0.13 mm

Data collection

Bruker APEXII CCD diffractometer 6018 independent reflections
Radiation source: fine-focus sealed tube 4664 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 26.0°, θmin = 0.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −6→6
Tmin = 0.968, Tmax = 0.987 k = −12→12
17614 measured reflections l = −37→37

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0389P)2 + 1.2455P] where P = (Fo2 + 2Fc2)/3
6018 reflections (Δ/σ)max < 0.001
415 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.6952 (5) 1.1513 (2) 0.41515 (8) 0.0331 (5)
C2A 0.5007 (5) 1.0629 (2) 0.42860 (8) 0.0323 (5)
H2A 0.4789 0.9789 0.4140 0.039*
C3A 0.3375 (5) 1.0977 (2) 0.46368 (8) 0.0330 (5)
H3A 0.2037 1.0377 0.4736 0.040*
C4A 0.3722 (5) 1.2207 (2) 0.48397 (7) 0.0313 (5)
N1A 0.1898 (4) 1.2606 (2) 0.51924 (7) 0.0387 (5)
O1A 0.0553 (4) 1.17409 (19) 0.53686 (6) 0.0511 (5)
O2A 0.1772 (4) 1.37879 (18) 0.52958 (6) 0.0489 (5)
C5A 0.5702 (5) 1.3092 (2) 0.47140 (8) 0.0350 (5)
H5A 0.5933 1.3926 0.4864 0.042*
C6A 0.7335 (5) 1.2738 (2) 0.43667 (8) 0.0357 (5)
H6A 0.8713 1.3327 0.4275 0.043*
O3A 0.8658 (3) 1.12568 (18) 0.38088 (6) 0.0442 (5)
C7A 0.7902 (5) 1.0268 (2) 0.34970 (8) 0.0349 (5)
C8A 0.5830 (5) 1.0467 (2) 0.32109 (8) 0.0394 (6)
H8A 0.4787 1.1242 0.3240 0.047*
C9A 0.5272 (5) 0.9532 (2) 0.28806 (8) 0.0360 (6)
H9A 0.3832 0.9663 0.2683 0.043*
C10A 0.6800 (4) 0.8405 (2) 0.28355 (7) 0.0278 (5)
C11A 0.8841 (5) 0.8202 (2) 0.31316 (8) 0.0377 (6)
H11A 0.9872 0.7422 0.3107 0.045*
C12A 0.9385 (5) 0.9137 (3) 0.34648 (8) 0.0417 (6)
H12A 1.0777 0.8996 0.3670 0.050*
N2A 0.6189 (4) 0.74848 (19) 0.24853 (6) 0.0305 (4)
H2A1 0.4481 0.7321 0.2427 0.037*
C13A 0.8018 (4) 0.6841 (2) 0.22349 (7) 0.0295 (5)
O4A 1.0444 (3) 0.68820 (17) 0.23109 (5) 0.0367 (4)
C14A 0.6836 (5) 0.6108 (3) 0.18369 (8) 0.0380 (6)
H14A 0.5192 0.5624 0.1926 0.046*
H14B 0.6300 0.6763 0.1622 0.046*
C15A 0.8712 (5) 0.5141 (3) 0.16170 (8) 0.0371 (6)
H15A 0.9136 0.4442 0.1823 0.044*
H15B 1.0413 0.5609 0.1546 0.044*
C16A 0.7546 (5) 0.4497 (3) 0.11993 (8) 0.0393 (6)
H16A 0.7300 0.5180 0.0980 0.047*
H16B 0.5762 0.4100 0.1262 0.047*
C17A 0.9380 (6) 0.3430 (3) 0.10128 (10) 0.0523 (7)
H17A 0.8580 0.3032 0.0745 0.078*
H17B 0.9603 0.2746 0.1228 0.078*
H17C 1.1137 0.3824 0.0945 0.078*
C1B 0.1775 (5) −0.1421 (2) 0.09199 (8) 0.0355 (5)
C2B 0.0018 (5) −0.0524 (2) 0.07505 (8) 0.0355 (5)
H2B −0.0041 0.0355 0.0870 0.043*
C3B −0.1649 (5) −0.0917 (2) 0.04060 (8) 0.0367 (6)
H3B −0.2868 −0.0314 0.0287 0.044*
C4B −0.1514 (5) −0.2198 (2) 0.02386 (8) 0.0358 (5)
N1B −0.3357 (5) −0.2628 (2) −0.01144 (7) 0.0452 (5)
O1B −0.4575 (5) −0.1779 (2) −0.03068 (7) 0.0630 (6)
O2B −0.3609 (4) −0.3815 (2) −0.02012 (7) 0.0585 (6)
C5B 0.0274 (5) −0.3092 (2) 0.03978 (8) 0.0403 (6)
H5B 0.0347 −0.3966 0.0274 0.048*
C6B 0.1945 (5) −0.2697 (3) 0.07381 (9) 0.0417 (6)
H6B 0.3210 −0.3293 0.0849 0.050*
O3B 0.3504 (4) −0.11092 (19) 0.12585 (6) 0.0511 (5)
C7B 0.2903 (5) −0.0041 (2) 0.15468 (8) 0.0374 (6)
C8B 0.0770 (5) −0.0121 (3) 0.18294 (8) 0.0414 (6)
H8B −0.0434 −0.0861 0.1812 0.050*
C9B 0.0393 (5) 0.0892 (2) 0.21400 (8) 0.0364 (6)
H9B −0.1091 0.0848 0.2334 0.044*
C10B 0.2158 (4) 0.1966 (2) 0.21698 (7) 0.0292 (5)
C11B 0.4253 (5) 0.2041 (3) 0.18721 (8) 0.0383 (6)
H11B 0.5443 0.2787 0.1883 0.046*
C12B 0.4618 (5) 0.1036 (3) 0.15602 (8) 0.0429 (6)
H12B 0.6050 0.1092 0.1356 0.051*
N2B 0.1717 (4) 0.29683 (19) 0.24937 (6) 0.0318 (4)
H2B1 0.0035 0.3139 0.2560 0.038*
C13B 0.3637 (4) 0.3693 (2) 0.27129 (7) 0.0313 (5)
O4B 0.6048 (3) 0.35562 (18) 0.26473 (6) 0.0424 (4)
C14B 0.2633 (5) 0.4669 (2) 0.30584 (8) 0.0359 (6)
H14C 0.0654 0.4723 0.3036 0.043*
H14D 0.3410 0.5557 0.3006 0.043*
C15B 0.3385 (5) 0.4267 (3) 0.35172 (8) 0.0417 (6)
H15C 0.5355 0.4158 0.3533 0.050*
H15D 0.2522 0.3401 0.3575 0.050*
C16B 0.2540 (5) 0.5274 (3) 0.38710 (8) 0.0402 (6)
H16C 0.0604 0.5449 0.3834 0.048*
H16D 0.2775 0.4882 0.4160 0.048*
C17B 0.4077 (5) 0.6579 (3) 0.38696 (9) 0.0447 (6)
H17D 0.3405 0.7170 0.4104 0.067*
H17E 0.3830 0.6988 0.3587 0.067*
H17F 0.5992 0.6424 0.3917 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0290 (12) 0.0373 (13) 0.0328 (12) 0.0016 (10) −0.0005 (10) −0.0023 (10)
C2A 0.0350 (13) 0.0281 (12) 0.0333 (13) 0.0004 (10) −0.0023 (10) −0.0051 (10)
C3A 0.0340 (12) 0.0312 (12) 0.0338 (13) −0.0013 (10) −0.0010 (10) 0.0006 (10)
C4A 0.0317 (12) 0.0334 (12) 0.0287 (12) 0.0056 (10) −0.0030 (9) −0.0021 (9)
N1A 0.0404 (12) 0.0429 (13) 0.0325 (11) 0.0060 (10) −0.0006 (9) −0.0043 (9)
O1A 0.0585 (12) 0.0512 (12) 0.0433 (11) −0.0046 (10) 0.0158 (9) −0.0016 (9)
O2A 0.0591 (12) 0.0395 (11) 0.0473 (11) 0.0092 (9) 0.0072 (9) −0.0122 (8)
C5A 0.0384 (13) 0.0292 (12) 0.0369 (13) 0.0012 (10) −0.0039 (10) −0.0056 (10)
C6A 0.0335 (13) 0.0324 (13) 0.0406 (14) −0.0040 (10) −0.0011 (10) −0.0041 (10)
O3A 0.0358 (9) 0.0478 (11) 0.0471 (11) −0.0099 (8) 0.0101 (8) −0.0188 (8)
C7A 0.0294 (12) 0.0403 (14) 0.0340 (13) −0.0053 (10) 0.0063 (10) −0.0085 (10)
C8A 0.0432 (14) 0.0351 (13) 0.0399 (14) 0.0108 (11) 0.0033 (11) −0.0010 (11)
C9A 0.0318 (12) 0.0428 (14) 0.0338 (13) 0.0086 (10) −0.0025 (10) 0.0028 (11)
C10A 0.0234 (11) 0.0339 (12) 0.0260 (11) −0.0025 (9) 0.0020 (9) 0.0001 (9)
C11A 0.0344 (13) 0.0391 (14) 0.0392 (14) 0.0100 (10) −0.0067 (11) −0.0070 (11)
C12A 0.0309 (13) 0.0523 (16) 0.0410 (14) 0.0042 (11) −0.0082 (11) −0.0110 (12)
N2A 0.0191 (9) 0.0385 (11) 0.0336 (10) −0.0009 (8) −0.0017 (8) −0.0033 (8)
C13A 0.0227 (11) 0.0336 (12) 0.0321 (12) −0.0008 (9) −0.0020 (9) 0.0016 (10)
O4A 0.0223 (8) 0.0474 (10) 0.0398 (10) 0.0009 (7) −0.0026 (7) −0.0088 (8)
C14A 0.0256 (12) 0.0470 (15) 0.0408 (14) 0.0009 (10) −0.0061 (10) −0.0076 (11)
C15A 0.0294 (12) 0.0443 (14) 0.0371 (13) −0.0013 (10) −0.0028 (10) −0.0035 (11)
C16A 0.0329 (13) 0.0474 (15) 0.0368 (14) −0.0040 (11) −0.0045 (10) −0.0050 (11)
C17A 0.0418 (15) 0.0628 (19) 0.0507 (17) 0.0022 (13) −0.0084 (13) −0.0196 (14)
C1B 0.0318 (12) 0.0384 (14) 0.0361 (13) 0.0053 (10) −0.0003 (10) −0.0036 (10)
C2B 0.0369 (13) 0.0302 (12) 0.0391 (14) 0.0046 (10) 0.0012 (10) −0.0042 (10)
C3B 0.0386 (13) 0.0372 (13) 0.0343 (13) 0.0054 (11) 0.0003 (10) −0.0006 (10)
C4B 0.0372 (13) 0.0385 (14) 0.0312 (13) −0.0057 (11) 0.0029 (10) −0.0001 (10)
N1B 0.0473 (13) 0.0493 (14) 0.0383 (12) −0.0052 (11) −0.0008 (10) −0.0044 (11)
O1B 0.0697 (14) 0.0609 (14) 0.0582 (13) 0.0056 (11) −0.0255 (11) −0.0036 (11)
O2B 0.0713 (14) 0.0471 (12) 0.0557 (13) −0.0152 (10) −0.0069 (10) −0.0106 (10)
C5B 0.0498 (15) 0.0301 (13) 0.0405 (14) 0.0019 (11) 0.0043 (12) −0.0044 (11)
C6B 0.0457 (15) 0.0366 (14) 0.0429 (15) 0.0117 (11) −0.0014 (12) −0.0033 (11)
O3B 0.0468 (11) 0.0528 (12) 0.0528 (12) 0.0211 (9) −0.0167 (9) −0.0187 (9)
C7B 0.0359 (13) 0.0403 (14) 0.0360 (13) 0.0123 (11) −0.0075 (11) −0.0065 (11)
C8B 0.0425 (15) 0.0413 (15) 0.0406 (14) −0.0049 (11) −0.0045 (11) 0.0050 (11)
C9B 0.0326 (13) 0.0442 (14) 0.0323 (13) −0.0020 (11) 0.0025 (10) 0.0030 (11)
C10B 0.0245 (11) 0.0353 (12) 0.0280 (12) 0.0071 (9) −0.0026 (9) 0.0021 (9)
C11B 0.0311 (13) 0.0444 (15) 0.0388 (14) −0.0041 (11) 0.0050 (10) −0.0057 (11)
C12B 0.0301 (13) 0.0611 (17) 0.0366 (14) 0.0025 (12) 0.0051 (10) −0.0111 (12)
N2B 0.0216 (9) 0.0440 (12) 0.0297 (10) 0.0067 (8) 0.0025 (8) −0.0014 (9)
C13B 0.0259 (12) 0.0376 (13) 0.0304 (12) 0.0052 (10) −0.0011 (9) −0.0004 (10)
O4B 0.0221 (8) 0.0595 (12) 0.0445 (10) 0.0046 (8) 0.0008 (7) −0.0129 (9)
C14B 0.0298 (12) 0.0402 (14) 0.0378 (14) 0.0096 (10) −0.0015 (10) −0.0035 (11)
C15B 0.0467 (15) 0.0408 (14) 0.0382 (14) 0.0114 (12) 0.0052 (11) 0.0019 (11)
C16B 0.0427 (14) 0.0446 (15) 0.0337 (13) 0.0106 (11) 0.0067 (11) −0.0003 (11)
C17B 0.0429 (15) 0.0489 (16) 0.0418 (15) 0.0079 (12) −0.0005 (12) −0.0061 (12)

Geometric parameters (Å, º)

C1A—O3A 1.370 (3) C1B—O3B 1.369 (3)
C1A—C2A 1.379 (3) C1B—C2B 1.385 (3)
C1A—C6A 1.391 (3) C1B—C6B 1.390 (3)
C2A—C3A 1.386 (3) C2B—C3B 1.382 (3)
C2A—H2A 0.9500 C2B—H2B 0.9500
C3A—C4A 1.378 (3) C3B—C4B 1.378 (3)
C3A—H3A 0.9500 C3B—H3B 0.9500
C4A—C5A 1.383 (3) C4B—C5B 1.381 (3)
C4A—N1A 1.461 (3) C4B—N1B 1.464 (3)
N1A—O2A 1.229 (3) N1B—O2B 1.225 (3)
N1A—O1A 1.232 (3) N1B—O1B 1.227 (3)
C5A—C6A 1.379 (3) C5B—C6B 1.374 (4)
C5A—H5A 0.9500 C5B—H5B 0.9500
C6A—H6A 0.9500 C6B—H6B 0.9500
O3A—C7A 1.403 (3) O3B—C7B 1.406 (3)
C7A—C12A 1.373 (3) C7B—C12B 1.371 (4)
C7A—C8A 1.373 (3) C7B—C8B 1.373 (4)
C8A—C9A 1.383 (3) C8B—C9B 1.387 (4)
C8A—H8A 0.9500 C8B—H8B 0.9500
C9A—C10A 1.385 (3) C9B—C10B 1.385 (3)
C9A—H9A 0.9500 C9B—H9B 0.9500
C10A—C11A 1.383 (3) C10B—C11B 1.388 (3)
C10A—N2A 1.422 (3) C10B—N2B 1.412 (3)
C11A—C12A 1.387 (3) C11B—C12B 1.383 (3)
C11A—H11A 0.9500 C11B—H11B 0.9500
C12A—H12A 0.9500 C12B—H12B 0.9500
N2A—C13A 1.352 (3) N2B—C13B 1.355 (3)
N2A—H2A1 0.8800 N2B—H2B1 0.8800
C13A—O4A 1.229 (3) C13B—O4B 1.227 (3)
C13A—C14A 1.514 (3) C13B—C14B 1.512 (3)
C14A—C15A 1.506 (3) C14B—C15B 1.522 (3)
C14A—H14A 0.9900 C14B—H14C 0.9900
C14A—H14B 0.9900 C14B—H14D 0.9900
C15A—C16A 1.522 (3) C15B—C16B 1.524 (3)
C15A—H15A 0.9900 C15B—H15C 0.9900
C15A—H15B 0.9900 C15B—H15D 0.9900
C16A—C17A 1.522 (4) C16B—C17B 1.513 (4)
C16A—H16A 0.9900 C16B—H16C 0.9900
C16A—H16B 0.9900 C16B—H16D 0.9900
C17A—H17A 0.9800 C17B—H17D 0.9800
C17A—H17B 0.9800 C17B—H17E 0.9800
C17A—H17C 0.9800 C17B—H17F 0.9800
O3A—C1A—C2A 123.5 (2) O3B—C1B—C2B 123.2 (2)
O3A—C1A—C6A 115.3 (2) O3B—C1B—C6B 116.0 (2)
C2A—C1A—C6A 121.2 (2) C2B—C1B—C6B 120.8 (2)
C1A—C2A—C3A 119.4 (2) C3B—C2B—C1B 119.5 (2)
C1A—C2A—H2A 120.3 C3B—C2B—H2B 120.2
C3A—C2A—H2A 120.3 C1B—C2B—H2B 120.2
C4A—C3A—C2A 119.0 (2) C4B—C3B—C2B 118.9 (2)
C4A—C3A—H3A 120.5 C4B—C3B—H3B 120.5
C2A—C3A—H3A 120.5 C2B—C3B—H3B 120.5
C3A—C4A—C5A 122.2 (2) C3B—C4B—C5B 122.1 (2)
C3A—C4A—N1A 119.0 (2) C3B—C4B—N1B 118.8 (2)
C5A—C4A—N1A 118.8 (2) C5B—C4B—N1B 119.1 (2)
O2A—N1A—O1A 123.4 (2) O2B—N1B—O1B 123.5 (2)
O2A—N1A—C4A 118.3 (2) O2B—N1B—C4B 118.3 (2)
O1A—N1A—C4A 118.4 (2) O1B—N1B—C4B 118.2 (2)
C6A—C5A—C4A 118.6 (2) C6B—C5B—C4B 118.9 (2)
C6A—C5A—H5A 120.7 C6B—C5B—H5B 120.5
C4A—C5A—H5A 120.7 C4B—C5B—H5B 120.5
C5A—C6A—C1A 119.6 (2) C5B—C6B—C1B 119.7 (2)
C5A—C6A—H6A 120.2 C5B—C6B—H6B 120.1
C1A—C6A—H6A 120.2 C1B—C6B—H6B 120.1
C1A—O3A—C7A 118.14 (18) C1B—O3B—C7B 118.86 (18)
C12A—C7A—C8A 120.8 (2) C12B—C7B—C8B 121.1 (2)
C12A—C7A—O3A 118.7 (2) C12B—C7B—O3B 118.1 (2)
C8A—C7A—O3A 120.4 (2) C8B—C7B—O3B 120.6 (2)
C7A—C8A—C9A 119.6 (2) C7B—C8B—C9B 119.2 (2)
C7A—C8A—H8A 120.2 C7B—C8B—H8B 120.4
C9A—C8A—H8A 120.2 C9B—C8B—H8B 120.4
C8A—C9A—C10A 120.4 (2) C10B—C9B—C8B 120.7 (2)
C8A—C9A—H9A 119.8 C10B—C9B—H9B 119.7
C10A—C9A—H9A 119.8 C8B—C9B—H9B 119.7
C11A—C10A—C9A 119.5 (2) C9B—C10B—C11B 119.0 (2)
C11A—C10A—N2A 122.2 (2) C9B—C10B—N2B 118.8 (2)
C9A—C10A—N2A 118.4 (2) C11B—C10B—N2B 122.2 (2)
C10A—C11A—C12A 120.1 (2) C12B—C11B—C10B 120.3 (2)
C10A—C11A—H11A 120.0 C12B—C11B—H11B 119.8
C12A—C11A—H11A 120.0 C10B—C11B—H11B 119.8
C7A—C12A—C11A 119.7 (2) C7B—C12B—C11B 119.7 (2)
C7A—C12A—H12A 120.1 C7B—C12B—H12B 120.2
C11A—C12A—H12A 120.1 C11B—C12B—H12B 120.2
C13A—N2A—C10A 125.31 (18) C13B—N2B—C10B 126.19 (18)
C13A—N2A—H2A1 117.3 C13B—N2B—H2B1 116.9
C10A—N2A—H2A1 117.3 C10B—N2B—H2B1 116.9
O4A—C13A—N2A 123.5 (2) O4B—C13B—N2B 123.0 (2)
O4A—C13A—C14A 122.4 (2) O4B—C13B—C14B 121.2 (2)
N2A—C13A—C14A 114.11 (19) N2B—C13B—C14B 115.74 (19)
C15A—C14A—C13A 114.24 (19) C13B—C14B—C15B 111.66 (19)
C15A—C14A—H14A 108.7 C13B—C14B—H14C 109.3
C13A—C14A—H14A 108.7 C15B—C14B—H14C 109.3
C15A—C14A—H14B 108.7 C13B—C14B—H14D 109.3
C13A—C14A—H14B 108.7 C15B—C14B—H14D 109.3
H14A—C14A—H14B 107.6 H14C—C14B—H14D 107.9
C14A—C15A—C16A 113.0 (2) C14B—C15B—C16B 112.8 (2)
C14A—C15A—H15A 109.0 C14B—C15B—H15C 109.0
C16A—C15A—H15A 109.0 C16B—C15B—H15C 109.0
C14A—C15A—H15B 109.0 C14B—C15B—H15D 109.0
C16A—C15A—H15B 109.0 C16B—C15B—H15D 109.0
H15A—C15A—H15B 107.8 H15C—C15B—H15D 107.8
C15A—C16A—C17A 111.2 (2) C17B—C16B—C15B 114.6 (2)
C15A—C16A—H16A 109.4 C17B—C16B—H16C 108.6
C17A—C16A—H16A 109.4 C15B—C16B—H16C 108.6
C15A—C16A—H16B 109.4 C17B—C16B—H16D 108.6
C17A—C16A—H16B 109.4 C15B—C16B—H16D 108.6
H16A—C16A—H16B 108.0 H16C—C16B—H16D 107.6
C16A—C17A—H17A 109.5 C16B—C17B—H17D 109.5
C16A—C17A—H17B 109.5 C16B—C17B—H17E 109.5
H17A—C17A—H17B 109.5 H17D—C17B—H17E 109.5
C16A—C17A—H17C 109.5 C16B—C17B—H17F 109.5
H17A—C17A—H17C 109.5 H17D—C17B—H17F 109.5
H17B—C17A—H17C 109.5 H17E—C17B—H17F 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2A—H2A1···O4Ai 0.88 2.08 2.955 (2) 178
N2B—H2B1···O4Bi 0.88 2.05 2.929 (2) 174
C3A—H3A···O1Aii 0.95 2.49 3.341 (3) 150
C5A—H5A···O2Aiii 0.95 2.62 3.376 (3) 137
C3B—H3B···O1Biv 0.95 2.49 3.360 (3) 153

Symmetry codes: (i) x−1, y, z; (ii) −x, −y+2, −z+1; (iii) −x+1, −y+3, −z+1; (iv) −x−1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2093).

References

  1. Bruker (1998). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Butt, M. S., Akhter, Z., Bolte, M., Siddiqi, H. M. & Shamsi, E. (2007). Acta Cryst. E63, o476–o478.
  3. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  4. Nigar, A., Akhter, Z., Bolte, M., Siddiqi, H. M. & Hussain, R. (2008). Acta Cryst. E64, o2186. [DOI] [PMC free article] [PubMed]
  5. Nigar, A., Akhter, Z. & Tahir, M. N. (2012). Acta Cryst. E68, o2485. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036744/gg2093sup1.cif

e-68-o2816-sup1.cif (34KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036744/gg2093Isup2.hkl

e-68-o2816-Isup2.hkl (294.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036744/gg2093Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES